scholarly journals Effects of increased CO2 concentrations on surface temperature of the early Earth

Nature ◽  
1983 ◽  
Vol 301 (5895) ◽  
pp. 53-55 ◽  
Author(s):  
William R. Kuhn ◽  
James F. Kasting
2018 ◽  
Author(s):  
Duncan Ackerley ◽  
Robin Chadwick ◽  
Dietmar Dommenget ◽  
Paola Petrelli

Abstract. General circulation models (GCMs) are routinely run under Atmospheric Modelling Intercomparison Project (AMIP) conditions with prescribed sea surface temperatures (SSTs) and sea ice concentrations (SICs) from observations. These AMIP simulations are often used to evaluate the role of the land and/or atmosphere in causing the development of systematic errors in such GCMs. Extensions to the original AMIP experiment have also been developed to evaluate the response of the global climate to increased SSTs (prescribed) and carbon-dioxide (CO2) as part of the Cloud Feedback Model Intercomparison Project (CFMIP). None of these international modelling initiatives has undertaken a set of experiments where the land conditions are also prescribed, which is the focus of the work presented in this paper. Experiments are performed initially with freely varying land conditions (surface temperature and, soil temperature and mositure) under five different configurations (AMIP, AMIP with uniform 4 K added to SSTs, AMIP SST with quadrupled CO2, AMIP SST and quadrupled CO2 without the plant stomata response, and increasing the solar constant by 3.3 %). Then, the land surface temperatures from the free-land experiments are used to perform a set of “AMIP-prescribed land” (PL) simulations, which are evaluated against their free-land counterparts. The PL simulations agree well with the free-land experiments, which indicates that the land surface is prescribed in a way that is consistent with the original free-land configuration. Further experiments are also performed with different combinations of SSTs, CO2 concentrations, solar constant and land conditions. For example, SST and land conditions are used from the AMIP simulation with quadrupled CO2 in order to simulate the atmospheric response to increased CO2 concentrations without the surface temperature changing. The results of all these experiments have been made publicly available for further analysis. The main aims of this paper are to provide a description of the method used and an initial validation of these AMIP-prescribed land experiments.


Nature ◽  
1977 ◽  
Vol 270 (5638) ◽  
pp. 589-591 ◽  
Author(s):  
ANN HENDERSON-SELLERS ◽  
A. J. MEADOWS

Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Jure Japelj

Tidal heating may have raised the surface temperature of early Earth and triggered global volcanism, a new study says.


2021 ◽  
Vol 133 (6) ◽  
pp. 1647-1659
Author(s):  
Smrati Gupta ◽  
Yogesh K. Tiwari ◽  
J. V. Revadekar ◽  
Pramit Kumar Deb Burman ◽  
Supriyo Chakraborty ◽  
...  

2018 ◽  
Vol 11 (9) ◽  
pp. 3865-3881 ◽  
Author(s):  
Duncan Ackerley ◽  
Robin Chadwick ◽  
Dietmar Dommenget ◽  
Paola Petrelli

Abstract. General circulation models (GCMs) are routinely run under Atmospheric Modelling Intercomparison Project (AMIP) conditions with prescribed sea surface temperatures (SSTs) and sea ice concentrations (SICs) from observations. These AMIP simulations are often used to evaluate the role of the land and/or atmosphere in causing the development of systematic errors in such GCMs. Extensions to the original AMIP experiment have also been developed to evaluate the response of the global climate to increased SSTs (prescribed) and carbon dioxide (CO2) as part of the Cloud Feedback Model Intercomparison Project (CFMIP). None of these international modelling initiatives has undertaken a set of experiments where the land conditions are also prescribed, which is the focus of the work presented in this paper. Experiments are performed initially with freely varying land conditions (surface temperature, and soil temperature and moisture) under five different configurations (AMIP, AMIP with uniform 4 K added to SSTs, AMIP SST with quadrupled CO2, AMIP SST and quadrupled CO2 without the plant stomata response, and increasing the solar constant by 3.3 %). Then, the land surface temperatures from the free land experiments are used to perform a set of “AMIP prescribed land” (PL) simulations, which are evaluated against their free land counterparts. The PL simulations agree well with the free land experiments, which indicates that the land surface is prescribed in a way that is consistent with the original free land configuration. Further experiments are also performed with different combinations of SSTs, CO2 concentrations, solar constant and land conditions. For example, SST and land conditions are used from the AMIP simulation with quadrupled CO2 in order to simulate the atmospheric response to increased CO2 concentrations without the surface temperature changing. The results of all these experiments have been made publicly available for further analysis. The main aims of this paper are to provide a description of the method used and an initial validation of these AMIP prescribed land experiments.


2010 ◽  
Vol 23 (10) ◽  
pp. 2562-2584 ◽  
Author(s):  
A. Winguth ◽  
C. Shellito ◽  
C. Shields ◽  
C. Winguth

Abstract The Paleocene–Eocene Thermal Maximum (PETM; 55 Ma) is of particular interest since it is regarded as a suitable analog to future climate change. In this study, the PETM climate is investigated using the Community Climate System Model (CCSM3) with atmospheric CO2 concentrations of 4×, 8×, and 16× the preindustrial value. Simulated climate change from 4× to 8× atmospheric CO2 concentration, possibly corresponding to an environmental precursor of the PETM event, leads to a warming of the North Atlantic Ocean Intermediate-Water masses, thus lowering the critical depth for methane hydrate destabilization by ∼500 m. A further increase from 8× to 16×CO2, analogous to a possible massive methane hydrate release, results in global oceanic warming and stratification. The increase in the radiative surface warming, especially at high latitudes, is partially offset by a decrease in the ocean heat transport due to a reduced overturning circulation. Surface temperature values simulated in the 16×CO2 PETM run represent the closest match to surface temperature reconstructions from proxies for this period. Simulated PETM precipitation, characterized by a slight northward shift of the intertropical convergence zone, increases at higher CO2 concentrations, especially for the northern midlatitudes as well as the high latitudes in both hemispheres. Data-inferred precipitation values and gradients for North America and Spain, for instance, are in good agreement with the 16×CO2 simulation. Increasing atmospheric CO2 concentrations might also have favored the release of terrestrial methane through warmer and wetter conditions over land, thus reinforcing the greenhouse gas concentration increase.


2020 ◽  
Author(s):  
Junyan Xiong ◽  
Jun Yang

Abstract. During the Archean Eon in 2.7 billion years ago, solar luminosity was about 75 % of the present-day level, but the surface temperature was suggested to similar to or even higher than modern. What mechanisms act to maintain the temperate climate of early Earth is not clearly known yet. Recent studies suggested that surface air pressure was different from the present level. How does varying surface air pressure influence the climate? Using an atmospheric general circulation model coupled to a slab ocean with specified oceanic heat transport, we show that decreasing (increasing) surface pressure acts to cool (warm) the surface mainly because the greenhouse effect of pressure broadening becomes weaker (stronger). The effect of halfing or doubling the surface pressure on the global-mean surface temperature is about 10 K or even larger when ice albedo feedback or water vapor feedback is strong. If the surface pressure was 0.5 bar, a combination of a CO2 partial pressure of about 0.04 bar and an oceanic heat transport of twice the present-day level or a combination of a CO2 partial pressure of about 0.10 bar and an oceanic heat transport of half the present-day level is required to maintain a climate similar to modern, under a given CH4 partial pressure of 1 mbar. Future work with fully coupled atmosphere-ocean models is required to explore the strength of oceanic heat transport and with cloud resolving models to examine the strength of cloud radiative effect under different surface air pressures.


Sign in / Sign up

Export Citation Format

Share Document