scholarly journals Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta

1995 ◽  
Vol 72 (2) ◽  
pp. 427-434 ◽  
Author(s):  
A Kooistra ◽  
AJM van den Eijnden-van Raaij ◽  
IA Klaij ◽  
JC Romijn ◽  
FH Schröder
1991 ◽  
Vol 11 (3) ◽  
pp. 1185-1194 ◽  
Author(s):  
P H Howe ◽  
G Draetta ◽  
E B Leof

Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition.


1991 ◽  
Vol 11 (3) ◽  
pp. 1185-1194
Author(s):  
P H Howe ◽  
G Draetta ◽  
E B Leof

Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition.


1988 ◽  
Vol 8 (8) ◽  
pp. 3088-3093
Author(s):  
R J Coffey ◽  
C C Bascom ◽  
N J Sipes ◽  
R Graves-Deal ◽  
B E Weissman ◽  
...  

Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level.


1988 ◽  
Vol 8 (8) ◽  
pp. 3088-3093 ◽  
Author(s):  
R J Coffey ◽  
C C Bascom ◽  
N J Sipes ◽  
R Graves-Deal ◽  
B E Weissman ◽  
...  

Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level.


2019 ◽  
Vol 25 (10) ◽  
pp. 638-646 ◽  
Author(s):  
Yan Li ◽  
Yungai Xiang ◽  
Yuxia Song ◽  
Lijing Wan ◽  
Guo Yu ◽  
...  

Abstract It is well established that microRNA (miRNA) expression profiles are altered in patients with polycystic ovary syndrome (PCOS). In addition, abnormal transforming growth factor beta (TGFB) signaling in granulosa cells is related to the pathological conditions of PCOS. However, the function of dysregulated miRNAs in PCOS is still unclear. In this study, we aimed to elucidate the roles of specific miRNAs in PCOS. We collected follicular fluid from 46 patients with PCOS and 32 healthy controls. Granulosa cells (GCs) were separated and the levels of six candidate miRNAs were determined by quantitative RT-PCR. The direct targets of three dysregulated miRNAs were predicted using bioinformatic tools and confirmed using a dual luciferase assay and immunoblotting. The biological function of three dysregulated miRNAs in primary GCs was determined using a cell proliferation assay and flow cytometry. We found that miR-423 expression was downregulated (P = 0.038), and the levels of miR-33b (P = 0.032) and miR-142 (P = 0.021) were upregulated in GCs from patients with PCOS, compared to controls. miR-423 directly repressed SMAD family member 7 (SMAD7) expression, while transforming growth factor beta receptor 1 (TGFBR1) was a direct target of both miR-33b and miR-142. An RNA oligonucleotide mixture containing miR-423 inhibitor, miR-33b mimic, and miR-142 mimic repressed TGFB signaling, promoted cell proliferation (P = 0.0098), repressed apoptosis (P = 0.027), and increased S phase cell numbers (P = 0.0036) in primary cultures of GCs, compared to the cells treated with a sequence scrambled control RNA oligonucleotide. This study unveiled the possible roles of three miRNAs in PCOS and might provide candidate biomarkers for PCOS diagnosis while in vivo functional studies, using transgenic or knockout mouse models, are expected to confirm the roles of dysregulated miRNAs in the pathogenesis of PCOS.


Sign in / Sign up

Export Citation Format

Share Document