scholarly journals miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance

2015 ◽  
Vol 6 (7) ◽  
pp. e1823-e1823 ◽  
Author(s):  
A De Cola ◽  
S Volpe ◽  
M C Budani ◽  
M Ferracin ◽  
R Lattanzio ◽  
...  
2019 ◽  
Vol 6 (1) ◽  
pp. 3-7
Author(s):  
Sumayah Al-Mahmood

Breast cancer stem cells (BCSCs) are a small proportion of cells that may be responsible for improving the resistance of cancer cells to the treatment and metastasis of breast cancer (MBC). Nanovehicles such as liposomes are extensively explored for diagnosis, treatment, and imaging of cancer. Targeted therapy with nanoparticles can be used to overcome the chemoresistance problem of cancer stem cells. Liposomes are lipid bilayer nanocarriers that have the ability to inhibit Pglycoprotein to overcome multidrug resistance that makes liposome ideal choice for using in BCSCs therapy. The main objective of this review is to describe novel liposomal formulations that are used in targeting BCSCs, which help in improving breast cancer treatment.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1028 ◽  
Author(s):  
David Rodriguez ◽  
Marc Ramkairsingh ◽  
Xiaozeng Lin ◽  
Anil Kapoor ◽  
Pierre Major ◽  
...  

Breast cancer stem cells (BCSC) play critical roles in the acquisition of resistance to endocrine therapy in estrogen receptor (ER)-positive (ER + ve) breast cancer (BC). The resistance results from complex alterations involving ER, growth factor receptors, NOTCH, Wnt/β-catenin, hedgehog, YAP/TAZ, and the tumor microenvironment. These mechanisms are likely converged on regulating BCSCs, which then drive the development of endocrine therapy resistance. In this regard, hormone therapies enrich BCSCs in ER + ve BCs under both pre-clinical and clinical settings along with upregulation of the core components of “stemness” transcriptional factors including SOX2, NANOG, and OCT4. SOX2 initiates a set of reactions involving SOX9, Wnt, FXY3D, and Src tyrosine kinase; these reactions stimulate BCSCs and contribute to endocrine resistance. The central contributions of BCSCs to endocrine resistance regulated by complex mechanisms offer a unified strategy to counter the resistance. ER + ve BCs constitute approximately 75% of BCs to which hormone therapy is the major therapeutic approach. Likewise, resistance to endocrine therapy remains the major challenge in the management of patients with ER + ve BC. In this review we will discuss evidence supporting a central role of BCSCs in developing endocrine resistance and outline the strategy of targeting BCSCs to reduce hormone therapy resistance.


2015 ◽  
Vol 4 (11) ◽  
pp. 1675-1680 ◽  
Author(s):  
Yujin Sun ◽  
Hoe Suk Kim ◽  
Phei Er Saw ◽  
Sangyong Jon ◽  
Woo Kyung Moon

2019 ◽  
Vol 14 (8) ◽  
pp. 669-682 ◽  
Author(s):  
Plabon K. Das ◽  
Md. A. Rakib ◽  
Jahan A. Khanam ◽  
Suja Pillai ◽  
Farhadul Islam

Background: Breast cancer remains to be one of the deadliest forms of cancers, owing to the drug resistance and tumor relapse caused by breast cancer stem cells (BCSCs) despite notable advancements in radio-chemotherapies. Objective: To find out novel therapeutics against breast cancer stem cells by aiming surface markers and signaling pathways. Methods: A systematic literature search was conducted through various electronic databases including, Pubmed, Scopus, Google scholar using the keywords "BCSCs, surface markers, signaling pathways and therapeutic options against breast cancer stem cell. Articles selected for the purpose of this review were reviewed and extensively analyzed. Results: Novel therapeutic strategies include targeting BCSCs surface markers and aberrantly activated signaling pathways or targeting their components, which play critical roles in self-renewal and defense, have been shown to be significantly effective against breast cancer. In this review, we represent a number of ways against BCSCs surface markers and hyper-activated signaling pathways to target this highly malicious entity of breast cancer more effectively in order to make a feasible and useful strategy for successful breast cancer treatment. In addition, we discuss some characteristics of BCSCs in disease progression and therapy resistance. Conclusion: BCSCs involved in cancer pathogenesis, therapy resistance and cancer recurrence. Thus, it is suggested that a multi-dimensional therapeutic approach by targeting surface markers and aberrantly activated signaling pathways of BCSCs alone or in combination with each other could really be worthwhile in the treatment of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document