scholarly journals RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response

Cell Research ◽  
2014 ◽  
Vol 25 (1) ◽  
pp. 9-23 ◽  
Author(s):  
Alexandre Maréchal ◽  
Lee Zou
2012 ◽  
Vol 445 (3) ◽  
pp. 393-401 ◽  
Author(s):  
Georgina E. Drury ◽  
Adam A. Dowle ◽  
David A. Ashford ◽  
Wanda M. Waterworth ◽  
Jerry Thomas ◽  
...  

DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.


2016 ◽  
Vol 45 (6) ◽  
pp. 3068-3085 ◽  
Author(s):  
Alessandro Cicconi ◽  
Emanuela Micheli ◽  
Fiammetta Vernì ◽  
Alison Jackson ◽  
Ana Citlali Gradilla ◽  
...  

Cell Research ◽  
2013 ◽  
Vol 23 (10) ◽  
pp. 1215-1228 ◽  
Author(s):  
Yucai Wang ◽  
Xiao Han ◽  
Fangming Wu ◽  
Justin W Leung ◽  
Megan G Lowery ◽  
...  

2014 ◽  
Vol 42 (18) ◽  
pp. 11560-11569 ◽  
Author(s):  
Zhi-Wei Chen ◽  
Bin Liu ◽  
Nai-Wang Tang ◽  
Yun-Hua Xu ◽  
Xiang-Yun Ye ◽  
...  

2020 ◽  
Vol 432 (23) ◽  
pp. 6108-6126
Author(s):  
Suqing Wang ◽  
Dharanidharan Ramamurthy ◽  
Jasper Tan ◽  
Jingyan Liu ◽  
Joyce Yip ◽  
...  

2018 ◽  
Author(s):  
Ramesh Sethy ◽  
Radhakrishnan Rakesh ◽  
Ketki Patne ◽  
Vijendra Arya ◽  
Tapan Sharma ◽  
...  

ABSTRACTThe G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases that are regulated by post-translational modifications. In this paper, the transcriptional co-regulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATP-dependent chromatin remodeling protein family, is described. SMARCAL1 and BRG1 co-localize on the promoters of ATM and ATR; downregulation of SMARCAL1/BRG1 results in transcriptional repression of ATM/ATR and therefore, overriding of the G2/M checkpoint leading to mitotic abnormalities. On doxorubicin-induced DNA damage, SMARCAL1 and BRG1 are upregulated and in turn, upregulate the expression of ATM/ATR.Phosphorylation of ATM/ATR is needed for the transcriptional upregulation of SMARCAL1 and BRG1, and therefore, of ATM and ATR on DNA damage. The regulation of ATM/ATR is rendered non-functional if SMARCAL1 and/or BRG1 are absent or if the two proteins are mutated such that they are unable to hydrolyze ATP, as in for example in Schimke Immuno-Osseous Dysplasia and Coffin-Siris Syndrome. Thus, an intricate transcriptional regulation of DNA damage response genes mediated by SMARCAL1 and BRG1 is present in mammalian cells.


2020 ◽  
Vol 64 (5) ◽  
pp. 737-752 ◽  
Author(s):  
Isabelle C. Da Costa ◽  
Christine K. Schmidt

Abstract DNA suffers constant insult from a variety of endogenous and exogenous sources. To deal with the arising lesions, cells have evolved complex and coordinated pathways, collectively termed the DNA damage response (DDR). Importantly, an improper DDR can lead to genome instability, premature ageing and human diseases, including cancer as well as neurodegenerative disorders. As a crucial process for cell survival, regulation of the DDR is multi-layered and includes several post-translational modifications. Since the discovery of ubiquitin in 1975 and the ubiquitylation cascade in the early 1980s, a number of ubiquitin-like proteins (UBLs) have been identified as post-translational modifiers. However, while the importance of ubiquitin and the UBLs SUMO and NEDD8 in DNA damage repair and signalling is well established, the roles of the remaining UBLs in the DDR are only starting to be uncovered. Herein, we revise the current status of the UBLs ISG15, UBL5, FAT10 and UFM1 as emerging co-regulators of DDR processes. In fact, it is becoming clear that these post-translational modifiers play important pleiotropic roles in DNA damage and/or associated stress-related cellular responses. Expanding our understanding of the molecular mechanisms underlying these emerging UBL functions will be fundamental for enhancing our knowledge of the DDR and potentially provide new therapeutic strategies for various human diseases including cancer.


Sign in / Sign up

Export Citation Format

Share Document