dna damage signalling
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuel Hume ◽  
Claudia P. Grou ◽  
Pauline Lascaux ◽  
Vincenzo D’Angiolella ◽  
Arnaud J. Legrand ◽  
...  

AbstractEfficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation.


Author(s):  
Eleonora Vertecchi ◽  
Angela Rizzo ◽  
Erica Salvati

Telomeres are crucial structures that preserve genome stability. Their progressive erosion over rounds of DNA duplication determines senescence of cells and organisms. Telomere length homeostasis is critical for cancer development then telomere maintenance mechanisms are established targets in cancer treatment. Besides telomere elongation, telomere’s dysfunction impinges on intracellular signalling pathways, in particular DNA damage signalling and repair affecting cancer cell survival and proliferation. This review summarizes and discusses about the recent findings in anti-cancer drug development targeting different “telosome” components.


2021 ◽  
Author(s):  
Samuel Hume ◽  
Claudia P Grou ◽  
Pauline Lascaux ◽  
Vincenzo D'Angiolella ◽  
Arnaud J Legrand ◽  
...  

Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. TCGA data reveal that this mechanism is hijacked in cancer, potentially allowing cancer cells to sustain uncontrolled proliferation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabrielle Olley ◽  
Madapura M. Pradeepa ◽  
Graeme R. Grimes ◽  
Sandra Piquet ◽  
Sophie E. Polo ◽  
...  

AbstractCornelia de Lange syndrome is a multisystem developmental disorder typically caused by mutations in the gene encoding the cohesin loader NIPBL. The associated phenotype is generally assumed to be the consequence of aberrant transcriptional regulation. Recently, we identified a missense mutation in BRD4 associated with a Cornelia de Lange-like syndrome that reduces BRD4 binding to acetylated histones. Here we show that, although this mutation reduces BRD4-occupancy at enhancers it does not affect transcription of the pluripotency network in mouse embryonic stem cells. Rather, it delays the cell cycle, increases DNA damage signalling, and perturbs regulation of DNA repair in mutant cells. This uncovers a role for BRD4 in DNA repair pathway choice. Furthermore, we find evidence of a similar increase in DNA damage signalling in cells derived from NIPBL-deficient individuals, suggesting that defective DNA damage signalling and repair is also a feature of typical Cornelia de Lange syndrome.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 919
Author(s):  
Karen E. Hemmings ◽  
Kirsten Riches-Suman ◽  
Marc A. Bailey ◽  
David J. O’Regan ◽  
Neil A. Turner ◽  
...  

Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.


2020 ◽  
Author(s):  
Ália dos Santos ◽  
Alexander W Cook ◽  
Rosemarie E Gough ◽  
Martin Schilling ◽  
Nora A Olszok ◽  
...  

Abstract DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.


2020 ◽  
Vol 48 (22) ◽  
pp. 12483-12501
Author(s):  
Samuel Hume ◽  
Grigory L Dianov ◽  
Kristijan Ramadan

Abstract Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.


Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

ABSTRACTDNA replication is well orchestrated in mammalian cells through a tight regulation of the temporal order of replication origin activation, named the replication timing, a robust and conserved process in each cell type. Upon low replication stress, the slowing of replication forks induces delayed replication of fragile regions leading to genetic instability. The impact of low replication stress on the replication timing in different cellular backgrounds has not been explored yet. Here we analysed the whole genome replication timing in a panel of 6 human cell lines under low replication stress. We first demonstrated that cancer cells were more impacted than non-tumour cells. Strikingly, we unveiled an enrichment of specific replication domains undergoing a switch from late to early replication in some cancer cells. We found that advances in replication timing correlate with heterochromatin regions poorly sensitive to DNA damage signalling while being subject to an increase of chromatin accessibility. Finally, our data indicate that, following release from replication stress conditions, replication timing advances can be inherited by the next cellular generation, suggesting a new mechanism by which cancer cells would adapt to cellular or environmental stress.


2020 ◽  
Author(s):  
Karen E Hemmings ◽  
Kirsten Riches-Suman ◽  
Marc A Bailey ◽  
David J O’Regan ◽  
Neil A Turner ◽  
...  

AbstractIncreased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.


Sign in / Sign up

Export Citation Format

Share Document