scholarly journals Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response

Cell Research ◽  
2013 ◽  
Vol 23 (10) ◽  
pp. 1215-1228 ◽  
Author(s):  
Yucai Wang ◽  
Xiao Han ◽  
Fangming Wu ◽  
Justin W Leung ◽  
Megan G Lowery ◽  
...  
2014 ◽  
Vol 42 (18) ◽  
pp. 11560-11569 ◽  
Author(s):  
Zhi-Wei Chen ◽  
Bin Liu ◽  
Nai-Wang Tang ◽  
Yun-Hua Xu ◽  
Xiang-Yun Ye ◽  
...  

2019 ◽  
Vol 86 ◽  
pp. 121-128 ◽  
Author(s):  
Laura V. Croft ◽  
Emma Bolderson ◽  
Mark N. Adams ◽  
Serene El-Kamand ◽  
Ruvini Kariawasam ◽  
...  

2006 ◽  
Vol 188 (12) ◽  
pp. 4577-4580 ◽  
Author(s):  
Rajesh Kasiviswanathan ◽  
Jae-Ho Shin ◽  
Zvi Kelman

ABSTRACT The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.


1993 ◽  
Vol 13 (12) ◽  
pp. 7303-7310
Author(s):  
S Altiok ◽  
B Groner

Transcription of the beta-casein gene in mammary epithelial cells is regulated by the lactogenic hormones insulin, glucocorticoids, and prolactin. The DNA sequence elements in the promoter which confer the action of the hormones on the transcriptional machinery and the nuclear proteins binding to this region have been investigated. We found that 221 nucleotides of promoter sequence 5' of the RNA start site are sufficient to mediate the induction of a chloramphenicol acetyltransferase reporter gene in transfected HC11 mammary epithelial cells. Deletion of 5' sequences to position -183 results in a construct with enhanced basal activity which still retains inducibility. A -170 beta-casein promoter-chloramphenicol acetyltransferase construct has very low transcriptional activity, which indicates the presence of a negative regulatory in the region between -221 and -183 and a positive regulatory element between -183 and -170. Band shift analysis showed that the promoter region between -194 and -163 specifically binds two nuclear proteins. The proteins are sequence-specific, single-stranded DNA-binding proteins which exclusively recognize the upper DNA strand and most likely play a repressing role in transcription. DNA binding activity of these nuclear proteins was observed only in nuclear extracts from mammary glands of mice in late pregnancy and postlactation, not during lactation. Hormonal control of the DNA binding activity of these proteins was also observed in the mammary epithelial cell line HC11. Mixing experiments showed that extracts from mammary tissue of lactating mice and from lactogenic hormone-treated HC11 cells contain an activity which can suppress the DNA binding of the single-stranded DNA-binding proteins.2+ identical specificity to the single-stranded DNA.


2014 ◽  
Vol 463 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Prabhat Khadka ◽  
Ji Hoon Lee ◽  
Seung Han Baek ◽  
Sue Young Oh ◽  
In Kwon Chung

DNA-PKcs-interacting protein KIP interacts with TRF2 and enhances the telomere binding activity of TRF2. Depletion of KIP induces telomere-damage response foci. Thus KIP plays important roles in the maintenance of functional telomeres and the regulation of telomere-associated DNA-damage response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2437-2437
Author(s):  
Ying Cai ◽  
Lalitha Nagarajan ◽  
Stephen J. Brandt

Abstract The multifunctional LIM domain-binding protein Ldb1 is important in multiple developmental programs, including hematopoiesis. An evolutionarily conserved family of proteins with single-stranded DNA-binding activity, the SSBPs, has been shown to act as Ldb1 partners and augment its biological actions. We recently established that Ssbp2 and Ssbp3 were components of an E-box-GATA DNA-binding complex in murine erythroid progenitors containing the LIM-only protein Lmo2 and transcription factors Tal1, E2A, and Gata1 and showed these SSBPs stimulated E box-GATA DNA-binding activity and inhibited Ldb1 ubiquitination and subsequent proteasomal degradation (Genes & Dev.21:942–955, 2007). As its SSBP interaction domain (Ldb1/Chip conserved domain or LCCD) is adjacent to Ldb1’s N-terminal dimerization domain (DD), we sought to determine whether SSBP binding affected Ldb1 dimerization. To investigate, the Ldb1 coding region was fused to the DNA-binding domain of the yeast transcription factor GAL4 (GAL4DBD) and in a second construct to the activation domain of herpesvirus VP16 (VP16AD). These fusion proteins were then expressed in mammalian cells with a luciferase reporter linked to a promoter with iterated GAL4 binding sites. Luciferase activity became detectable with coexpression of the VP16AD-Ldb1 and GAL4DBD-Ldb1 fusions, presumably from Ldb1 dimerization, which increased markedly with simultaneous expression of SSBP2. In contrast, SSBP2 (ΔLUFS) and Ldb1 (ΔLCCD) mutants incapable of interacting with Ldb1 and SSBPs, respectively, were inactive, suggesting that SSBP2 augmentation of Ldb1 dimerization involved direct protein-protein interactions. To exclude an effect of SSBP2 on turnover of Ldb1 fusion proteins, radiolabeled full-length Ldb1 and SSBP3 were prepared by in vitro transcription/translation, mixed, and subjected to chemical crosslinking. Addition of the crosslinker bis(sulfosuccinimidyl)-suberate (BS3) to Ldb1, but not SSBP3, led to the appearance of a radiolabeled protein with mobility in denaturing polyacrylamide gels approximately twice that of Ldb1, consistent with an Ldb1 homodimer. When SSBP3 and Ldb1 were mixed together and crosslinked, a dose-related increase was noted in a more retarded species predicted to contain two molecules each of Ldb1 and SSBP3, together with a decrease in monomeric Ldb1. Finally, two well-characterized dimerization-defective Ldb1 mutants, Ldb1(200–375) and Ldb1(50–375), failed to support the formation of the higher molecular weight species or to homodimerize. Thus, the SSBPs promoted assembly of ternary complexes incorporating both SSBP and Ldb1 in a manner dependent on Ldb1 dimerization. The failure to observe Ldb1-SSBP heterodimers in cross-linking experiments suggests, further, that the SSBPs interacted with preformed Ldb1 dimers. In summary, either through an allosteric effect on Ldb1’s DD or by altering the equilibrium between monomeric and dimeric species, the SSBPs promote Ldb1 oligomerization. Together with inhibition of Ldb1 ubiquitination and turnover, this would serve to augment Ldb1 function.


Sign in / Sign up

Export Citation Format

Share Document