scholarly journals The long terminal repeat negative control region is a critical element for insertional oncogenesis after gene transfer into hematopoietic progenitors with Moloney murine leukemia viral vectors

Gene Therapy ◽  
2016 ◽  
Vol 23 (11) ◽  
pp. 815-818
Author(s):  
Y Ikawa ◽  
T Uchiyama ◽  
G J Jagadeesh ◽  
F Candotti
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 164-164
Author(s):  
Yasuhiro Ikawa ◽  
Toru Uchiyama ◽  
Guridevi Jayashree Jagadeesh ◽  
Fabio Candotti

Abstract Gene transfer into hematopoietic stem cells has been used successfully to treat a variety of human genetic diseases. Although protocols have shown positive clinical outcomes, the successes of clinical trials have been tempered by adverse events in which the use of gamma-retroviral vectors (GV) containing full-length long terminal repeats (LTRs) with strong enhancer activity increased transcription of cancer-related genes, and thereby contributed to development of leukemia. Assessing safety of integrating viral vectors for future clinical use is therefore of paramount importance. The negative control region (NCR) is a particularly well-conserved sequence among mammalian gamma-retroviruses with demonstrated regulating a transcription activity of GV in hematopoietic cells. This suggests that the NCR might play a crucial role of insertional oncogenesis after gene transfer into hematopoietic progenitors. In a series of safety studies of viral gene transfer constructs, we used an in vitro assay of murine bone marrow (BM) cell immortalization and compared the consequences of hematopoietic stem cell transduction with three different kinds of viral vectors, including Moloney murine leukemia virus- (MMLV), lentivirus- (LV), and foamy virus (FV)-based constructs. To evaluate critical elements for cell immortalization by MMLV vectors, we also tested four different MMLV LTR variants deleted of either 1) most of the two 75-bp repeats associated with the viral enhancer (delE1), 2) all of the two 75-bp repeats and the NCR (delE2), 3) only the NCR (delNCR), or 4) carrying a deleterious mutation of the NCR NFAT motif (ΔNFAT). All vectors carried an internal expression cassette including the eGFP gene under the control of a UCOE (ubiquitously acting chromatin opening element) promoter. In this assay, BM cells are harvested from C57BL6 mice, exposed to retroviral supernatants and cultured long-term. Derived lines are considered immortalized based on their ability to continue to grow in vitro for more than six weeks in the presence of interleukin-3 and stem cell factor. Real-time PCR was performed to verify comparable transduction efficiency of bone marrow cells by different vectors. In our analysis of MMLV LTR mutants, full-MMLV and delE1 transduction of 92 and 108 cultures, respectively, resulted in 37 and 37 immortalized lines (40% and 34% immortalization rate, respectively). The difference in immortalization rate between full-MMLV and delE1 was not statistically significant. Transductions using delE2-, delNCR- and ΔNFAT-carrying vectors of 60, 36 and 35 cultures resulted in 10, 3 and 10 immortalized lines (17%, 8.3% and 29% immortalization rate, respectively). The difference between the immortalization caused by delE1 and delE2 vectors was statistically significant (p<0.05). Moreover, the difference between the immortalization caused by full-MMLV and delNCR vectors was statistically significant (p<0.01), while there was no significant difference between the immortalization induced by full-MMLV and ΔNFAT vectors. Transduction of 57 and 34 cultures with LV and FV vectors, respectively, resulted in no immortalized lines. Transductions of 128 cultures with a LV construct carrying the U3 region from the murine stem cell virus LTR as an internal promoter (LV-U3) resulted in 2 immortalized lines which was not statistically different from the results obtained with LV vectors carrying the UCOE internal promoter. These results confirm that GV are prone to causing immortalization of hematopoietic cells and indicate that deletion of the whole viral enhancer sequences may not be adequate to eliminate the insertional oncogenesis risk. Importantly, our data point to the NCR as a crucial element for immortalization and justify additional studies to evaluate its specific role in MMLV-mediated insertional oncogenesis. Finally, our results suggest that vectors based on LV and FV backbones are safer alternatives for clinical gene transfer into hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Michael Aaron Goodman ◽  
Paritha Arumugam ◽  
Devin Marie Pillis ◽  
Anastacia Loberg ◽  
Mohammed Nasimuzzaman ◽  
...  

ABSTRACTStrong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in “enhancerless” self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into theLMO2gene and then measuringLMO2expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay,LMO2expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCEUnderstanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.


1986 ◽  
Vol 6 (12) ◽  
pp. 4634-4640
Author(s):  
R Hanecak ◽  
S Mittal ◽  
B R Davis ◽  
H Fan

Deletional analysis within the long terminal repeat (LTR) of Moloney murine leukemia virus (M-MuLV) was performed. By molecular cloning, deletions were made in the vicinity of the XbaI site at -150 base pairs (bp) in the U3 region, between the tandemly repeated enhancers and the TATA box. The effects of the deletions on LTR function were measured in two ways. First, deleted LTRs were fused to the bacterial chloramphenicol acetyltransferase gene and used in transient expression assays. Second, infectious M-MuLVs were generated by transfection of M-MuLV proviruses containing the deleted LTRs, and the relative infectivity of the mutant viruses was assessed by XC-syncytial assay. Most of the deleted LTRs examined showed relatively high promoter activity in the transient chloramphenicol acetyltransferase assays, with values ranging from 20 to 50% of the wild-type M-MuLV LTR. Thus, the sequences between the enhancers and the TATA box were not absolutely required for transient expression. However, infectivity of viruses carrying the same deleted LTRs showed more pronounced effects. Deletion of sequences from -195 to -174 bp reduced infectivity 20- to 100-fold. Deletion of sequences within the region from -174 to -122 bp did not affect infectivity, indicating that this region is dispensable. On the other hand, deletion of sequences from -150 to -40 bp reduced infectivity from 5 to 6 logs, although the magnitude of the reduction partly may have reflected threshold envelope protein requirements for positive XC assays. The reduced infectivity did not appear to result from a failure of proviral DNA synthesis or integration by the mutant. Thus, the infectivity measurements identified three functional domains in the region between the enhancers and the TATA box.


1991 ◽  
Vol 174 (2) ◽  
pp. 389-396 ◽  
Author(s):  
B K Brightman ◽  
Q X Li ◽  
D J Trepp ◽  
H Fan

Neonatal CxD2 (Rmcfr) and Balb/c (Rmcfs) mice inoculated with Moloney murine leukemia virus (M-MuLV) exhibited approximately equivalent time course and pathology for disease. CxD2 mice showed only slightly reduced presence of Moloney mink cell focus-forming virus (M-MCF) provirus as seen by Southern blot analysis compared to Balb/c mice. This lack of restriction for disease and spread of MCF was in sharp contrast to that seen for CxD2 mice inoculated with Friend murine leukemia virus (F-MuLV), where incidence of disease and propagation of MCFs were severely restricted, as previously reported. Inoculation of CxD2 mice with FM-MuLV, a recombinant F-MuLV virus containing M-MuLV LTR sequences (U3 and R), resulted in T cell disease of time course equal to that seen in Balb/c mice; there also was little restriction for propagation of MCFs. This indicated that presence of the M-MuLV long terminal repeat (LTR) was sufficient for propagation of MCFs in CxD2 mice. Differing restriction for F-MuLV vs. M-MuLV in CxD2 mice was explained on the basis of different "MCF propagator cells" for the two viruses. It was suggested that cells propagating F-MCF (e.g., erythroid progenitors) are blocked by endogenous MCF-like gp70env protein, whereas cells propagating M-MCF (e.g., lymphoid) do not express this protein on their surface. F-MuLV disease in CxD2 mice was greatly accelerated when neonates were inoculated with a F-MuLV/F-MCF pseudotypic mixture. However, F-MCF provirus was not detectable or only barely detectable in F-MuLV/F-MCF-induced tumors, suggesting that F-MCF acted indirectly in induction of these tumors.


2003 ◽  
Vol 77 (8) ◽  
pp. 4965-4971 ◽  
Author(s):  
Linda Wolff ◽  
Richard Koller ◽  
Xinrong Hu ◽  
Miriam R. Anver

ABSTRACT Retroviruses can be used to accelerate hematopoietic cancers predisposed to neoplastic disease by prior genetic manipulations such as in transgenic or knockout mice. The virus imparts a second neoplastic “hit,” providing evidence that the initial hit is transforming. In the present study, a unique retrovirus was developed that can induce a high incidence of myeloid disease and has a broad host range. This agent is a Moloney murine leukemia virus (Mo-MuLV)-based virus that has most of the U3 region of the long terminal repeat (LTR) replaced with that of retrovirus 4070A. Like Mo-MuLV, this virus, called MOL4070LTR, is NB-tropic and not restricted by Fv1 allelles. MOL4070LTR causes myeloid leukemias in ca. 50% of mice, a finding in contrast to Mo-MuLV, which induces almost exclusively lymphoid disease. The data suggest that the LTR of the 4070A virus expands the tissue tropism of the disease to the myeloid lineage. Interesting, MCF recombinant envelope was expressed in the lymphoid but not the myeloid neoplasms of BALB/c mice. This retrovirus has the potential for accelerating myeloid disease in genetically engineered mice.


Gene ◽  
1989 ◽  
Vol 84 (2) ◽  
pp. 419-427 ◽  
Author(s):  
D. Valerio ◽  
M.P.W. Einerhand ◽  
P.M. Wamsley ◽  
T.A. Bakx ◽  
C.L. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document