Negative Control Region Is a Critical Element Of Insertional Oncogenesis After Gene Transfer Into Hematopoietic Progenitors With Moloney Murine Leukemia Viruses

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 164-164
Author(s):  
Yasuhiro Ikawa ◽  
Toru Uchiyama ◽  
Guridevi Jayashree Jagadeesh ◽  
Fabio Candotti

Abstract Gene transfer into hematopoietic stem cells has been used successfully to treat a variety of human genetic diseases. Although protocols have shown positive clinical outcomes, the successes of clinical trials have been tempered by adverse events in which the use of gamma-retroviral vectors (GV) containing full-length long terminal repeats (LTRs) with strong enhancer activity increased transcription of cancer-related genes, and thereby contributed to development of leukemia. Assessing safety of integrating viral vectors for future clinical use is therefore of paramount importance. The negative control region (NCR) is a particularly well-conserved sequence among mammalian gamma-retroviruses with demonstrated regulating a transcription activity of GV in hematopoietic cells. This suggests that the NCR might play a crucial role of insertional oncogenesis after gene transfer into hematopoietic progenitors. In a series of safety studies of viral gene transfer constructs, we used an in vitro assay of murine bone marrow (BM) cell immortalization and compared the consequences of hematopoietic stem cell transduction with three different kinds of viral vectors, including Moloney murine leukemia virus- (MMLV), lentivirus- (LV), and foamy virus (FV)-based constructs. To evaluate critical elements for cell immortalization by MMLV vectors, we also tested four different MMLV LTR variants deleted of either 1) most of the two 75-bp repeats associated with the viral enhancer (delE1), 2) all of the two 75-bp repeats and the NCR (delE2), 3) only the NCR (delNCR), or 4) carrying a deleterious mutation of the NCR NFAT motif (ΔNFAT). All vectors carried an internal expression cassette including the eGFP gene under the control of a UCOE (ubiquitously acting chromatin opening element) promoter. In this assay, BM cells are harvested from C57BL6 mice, exposed to retroviral supernatants and cultured long-term. Derived lines are considered immortalized based on their ability to continue to grow in vitro for more than six weeks in the presence of interleukin-3 and stem cell factor. Real-time PCR was performed to verify comparable transduction efficiency of bone marrow cells by different vectors. In our analysis of MMLV LTR mutants, full-MMLV and delE1 transduction of 92 and 108 cultures, respectively, resulted in 37 and 37 immortalized lines (40% and 34% immortalization rate, respectively). The difference in immortalization rate between full-MMLV and delE1 was not statistically significant. Transductions using delE2-, delNCR- and ΔNFAT-carrying vectors of 60, 36 and 35 cultures resulted in 10, 3 and 10 immortalized lines (17%, 8.3% and 29% immortalization rate, respectively). The difference between the immortalization caused by delE1 and delE2 vectors was statistically significant (p<0.05). Moreover, the difference between the immortalization caused by full-MMLV and delNCR vectors was statistically significant (p<0.01), while there was no significant difference between the immortalization induced by full-MMLV and ΔNFAT vectors. Transduction of 57 and 34 cultures with LV and FV vectors, respectively, resulted in no immortalized lines. Transductions of 128 cultures with a LV construct carrying the U3 region from the murine stem cell virus LTR as an internal promoter (LV-U3) resulted in 2 immortalized lines which was not statistically different from the results obtained with LV vectors carrying the UCOE internal promoter. These results confirm that GV are prone to causing immortalization of hematopoietic cells and indicate that deletion of the whole viral enhancer sequences may not be adequate to eliminate the insertional oncogenesis risk. Importantly, our data point to the NCR as a crucial element for immortalization and justify additional studies to evaluate its specific role in MMLV-mediated insertional oncogenesis. Finally, our results suggest that vectors based on LV and FV backbones are safer alternatives for clinical gene transfer into hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2049-2049
Author(s):  
Yasuhiro Ikawa ◽  
Toru Uchiyama ◽  
Guridevi Jayashree Jagadeesh ◽  
Fabio Candotti

Abstract Abstract 2049 Gene transfer into hematopoietic stem cells has been used successfully to treat a variety of human genetic diseases. Although protocols have shown positive clinical outcomes, the successes of clinical trials have been tempered by adverse events in which the integration of the viral vectors increased transcription of cancer-related genes and thereby contributed to development of leukemias. The use of gamma-retroviral vectors containing full-length, long terminal repeats (LTRs) with strong promoter and enhancer activity has been well documented to have the potential of resulting in activation of expression of genes neighboring the vector insertion site. Assessing safety of integrating viral vectors for future clinical use is therefore of paramount importance. In preparation for gene therapy approaches for the Wiskott-Aldrich syndrome (WAS), we used an in vitro assay of murine bone marrow (BM) cell immortalization to compare the consequences of hematopoietic stem cell transduction by three different kinds of viral vectors, including Moloney murine leukemia virus (MMLV), lentivirus (LV), and foamy virus (FV) constructs. To evaluate critical elements for cell immortalization by MMLV vectors, we also tested five different MMLV LTR forms: unmodified (full-MMLV), deleted of most of the two 75-bp repeats associated with the viral enhancer (delE1), deleted of all the two 75-bp repeats and negative control region (NCR) (delE2), deleted of the viral promoter sequences (delP), and with full deletion of enhancer and promoter sequences (delEP). All vectors carried an internal expression cassette including the eGFP gene under the control of a UCOE (ubiquitously acting chromatin opening element) or the WAS endogenous promoter (WASp). In this assay, BM cells are harvested from C57BL6 mice, exposed to retroviral supernatants and cultured long-term. Derived lines are considered immortalized based on their ability to continue to grow in vitro for more than six weeks in the presence of interleukin-3 and stem cell factor. Real-time PCR was performed to verify comparable transduction efficiency of bone marrow cells by different vectors. To date, full-MMLV and delE1 transduction of 123 and 132 cultures, respectively, has given rise to 48 and 43 immortalized lines (39.0% and 32.5% immortalization rate, respectively). The difference in immortalization rate between full-MMLV and delE1 was not statistically significant. In contrast, transduction of 114 and 62 cultures with LV and FV vectors, respectively, resulted in no immortalized lines. In our analysis of MMLV LTR mutants, full-MMLV and delE1 transduction of 56 and 72 cultures, respectively, has given rise to 24 and 26 immortalized lines (43% and 36% immortalization rate). Again, the difference in immortalization rate between full-MMLV and delE1 was not statistically significant. In contrast, delE2, delP and delEP transduction of 24 cultures each has given rise to 2, 5 and 3 immortalized lines (8.3%, 21% and 13% immortalized ratio, respectively). The difference between the immortalization caused by delE1 and delE2 vectors was statistically significant (p<0.01), while there was no significant difference between the full-MMLV and delP vectors. These preliminary results confirm that gamma-retroviral vectors are prone to causing immortalization of hematopoietic cells and indicate that deletion of viral enhancer and/or promoter sequences may not be adequate to eliminate the insertional oncogenesis risk. Importantly, our data point to the NCR as a crucial element for immortalization and justify additional studies to evaluate its specific role in MMLV-mediated insertional oncogenesis. Finally, our results suggest that vectors based on LV and FV backbones are safer alternatives for clinical gene transfer into hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1418-1422 ◽  
Author(s):  
M Bregni ◽  
M Magni ◽  
S Siena ◽  
M Di Nicola ◽  
G Bonadonna ◽  
...  

Abstract Hematopoietic progenitor cells circulate in the peripheral blood (PB) of cancer patients during the recovery phase that follows treatment with high-dose cyclophosphamide followed by hematopoietic growth factor infusion. We report that when PB progenitors were exposed in vitro to filtered supernatant from cell line PA317-N2, producing amphotropic helper-free N2 vector at conventional titers, successful retroviral- mediated transfer of neomycin resistance gene was documented by polymerase chain reaction in 93% of day 14 myelomonocytic colonies. Under the same conditions, gene transfer was achieved in 22% of steady- state bone marrow-derived myelomonocytic colonies. Neo-resistance gene transfer was documented also in a CD34+/cyclophosphamide-resistant precursor to granulocyte-macrophage colonies, an undifferentiated progenitor close to the hematopoietic stem cell. Neither cocultivation with vector-producing cells nor high vector titer were stringent requisites for efficient gene transfer. The large-scale availability of PB hematopoietic progenitors in cancer patients, together with the high gene transfer rate achieved under safe and clinically feasible conditions, support an optimal approach for gene transfer procedures into the human hematopoietic system.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Shai Erlich ◽  
Silvia R.P. Miranda ◽  
Jan W.M. Visser ◽  
Arie Dagan ◽  
Shimon Gatt ◽  
...  

Abstract The general utility of a novel, fluorescence-based procedure for assessing gene transfer and expression has been demonstrated using hematopoietic stem and progenitor cells. Lineage-depleted hematopoietic cells were isolated from the bone marrow or fetal livers of acid sphingomyelinase–deficient mice, and retrovirally transduced with amphotropic or ecotropic vectors encoding a normal acid sphingomyelinase (ASM) cDNA. Anti–c-Kit antibodies were then used to label stem- and progenitor-enriched cell populations, and the Bodipy fluorescence was analyzed in each group after incubation with a Bodipy-conjugated sphingomyelin. Only cells expressing the functional ASM (ie, transduced) could degrade the sphingomyelin, thereby reducing their Bodipy fluorescence as compared with nontransduced cells. The usefulness of this procedure for the in vitro assessment of gene transfer into hematopoietic stem cells was evaluated, as well as its ability to provide an enrichment of transduced stem cells in vivo. To show the value of this method for in vitro analysis, the effects of retroviral transduction using ecotropic versus amphotropic vectors, various growth factor combinations, and adult bone marrow versus fetal liver stem cells were assessed. The results of these studies confirmed the fact that ecotropic vectors were much more efficient at transducing murine stem cells than amphotropic vectors, and that among the three most commonly used growth factors (stem cell factor [SCF] and interleukins 3 and 6 [IL-3 and IL-6]), SCF had the most significant effect on the transduction of stem cells, whereas IL-6 had the most significant effect on progenitor cells. In addition, it was determined that fetal liver stem cells were only approximately twofold more “transducible” than stem cells from adult bone marrow. Transplantation of Bodipy-selected bone marrow cells into lethally irradiated mice showed that the number of spleen colony-forming units that were positive for the retroviral vector (as determined by polymerase chain reaction) was 76%, as compared with 32% in animals that were transplanted with cells that were nonselected. The methods described within this manuscript are particularly useful for evaluating hematopoietic stem cell gene transfer in vivo because the marker gene used in the procedure (ASM) encodes a naturally occurring mammalian enzyme that has no known adverse effects, and the fluorescent compound used for selection (Bodipy sphingomyelin) is removed from the cells before transplantation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1677-1677
Author(s):  
Zejin Sun ◽  
Yanzhu Yang ◽  
Yan Li ◽  
Daisy Zeng ◽  
Jingling Li ◽  
...  

Abstract Fanconi anemia (FA) is a recessive DNA repair disorder characterized by congenital abnormalities, bone marrow failure, genomic instability, and a predisposition to malignancies. As the majority of FA patients ultimately acquires severe bone marrow failure, transplantation of stem cells from a normal donor is the only curative treatment to replace the malfunctioning hematopoietic system. Stem cell gene transfer technology aimed at re-introducing the missing gene is a potentially promising therapy, however, prolonged ex vivo culture of cells, that was utilized in clinical trials with gammaretroviruses, results in a high incidence of apoptosis and at least in mice predisposes the surviving reinfused cells to hematological malignancy. Consequently, gene delivery systems such as lentiviruses that allow a reduction in ex vivo culture time are highly desirable. Here, we constructed a lentiviral vector expressing the human FANCA cDNA and tested the ability of this construct pseudotyped with either VSVG or a modified prototype foamyvirus (FV) envelope to correct Fanca−/− stem and progenitor cells in vitro and in vivo. In order to minimize genotoxic stress due to extended in vitro manipulations, an overnight transduction protocol was utilized where in the absence of prestimulation, murine Fanca−/− bone marrow cKit+ cells were co-cultured for 16h with FANCA lentivirus on the recombinant fibronectin fragment CH296. Transduction efficiency and transfer of lentivirally expressed FANCA was confirmed functionally in vitro by improved survival of consistently approximately 60% of clonogenic progenitors in serial concentrations of mitomycin C (MMC), irregardless of the envelope that was utilized to package the vector. Transduction of fibroblasts was also associated with complete correction of MMC-induced G2/M arrest and biochemically with the restoration of FancD2 mono-ubiquitination. Finally, to functionally determine whether gene delivery by the recombinant lentivirus during such a short transduction period is sufficient to correct Fanca−/− stem cell repopulation to wild-type levels, competitive repopulation experiments were conducted as previously described. Follow-up of up to 8 months demonstrated that the functional correction were also achieved in the hematopoietic stem cell compartment as evidenced by observations that the repopulating ability of Fanca−/− stem cells transduced with the recombinant lentivirus encoding hFANCA was equivalent to that of wild-type stem cells. Importantly, despite the fact that the gene transfer efficiency into cells surviving the transduction protocol were similar for both pseudotypes, VSVG was associated with a 4-fold higher toxicity to the c-kit+ cells than the FV envelope. Thus, when target cell numbers are limited as stem cells are in FA patients, the foamyviral envelope may facilitate overall greater survival of corrected stem cells. Collectively, these data indicate that the lentiviral construct can efficiently correct FA HSCs and progenitor cells in a short transduction protocol overnight without prestimulation and that the modified foamy envelope may have less cytotoxicity than the commonly used VSVG envelope.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4202-4202
Author(s):  
Benjamin Goebel ◽  
Christian Brendel ◽  
Daniela Abriss ◽  
Sabrina Kneissl ◽  
Martijn Brugman ◽  
...  

Abstract Introduction Generally, CD34+ cells are used for genetic modification in gene therapy trials. CD34+ cells consist of a heterogeneous cell population with mostly limited long-term repopulating capabilities, resulting in low long-term engraftment levels in particular in those diseases in which gene modified cells lack a proliferative advantage over non-modified cells. Therefore, modifications in gene transfer vectors and gene transfer strategies are required to improve long-term clinical benefit in gene therapy patients. One particular attractive approach to solve this problem is the improvement of HSC based gene transfer by specifically targeting cells with long-term engraftment capabilities. Material and Methods We constructed lentiviral gene transfer vectors (LV) specifically targeting CD133+ cells, a cell population with recognized long-term repopulating capabilities. Targeting is achieved by pseudotyping with engineered measles virus (MV) envelope proteins. The MV glycoprotein hemagglutinin, responsible for receptor recognition, is blinded for its native receptors and displays a single-chain antibody specific for CD133 (CD133-LV). These vectors were compared to VSV-pseudotyped lentiviral vectors in in vitro and in vivocompetitive repopulation assays using mobilized peripheral blood CD34+ cells. Results Superior transduction of isolated human hematopoietic stem cell populations (CD34+CD38- or CD34+CD133+ cells) compared to progenitor cell populations (CD34+CD38+ or CD34+CD133-) could be shown using the newly developed CD133-LV. Transduction of total CD34+ cells with CD133-LV vectors resulted in stable gene expression and gene marked cells expanded in vitro, while the number of VSV-G-LV transduced CD34+ cells declined over time. Competitive repopulation experiments in NSG mice showed a significantly improved engraftment of CD133-LV transduced HSCs. At ∼12 weeks post-transplantation gene marked hematopoiesis was dominated by the progeny of CD133-LV transduced cells in 42 out of 52 transplanted animals in the bone marrow and 39 out of 45 transplanted animals in the spleen, respectively. Consistent with this data we could show that stem cell content in the CD133-LV transduced population is about five times higher compared to the VSV-transduced population using a limiting dilution competitive repopulation assay (LDA-CRU). Experiments showing proof of principle for the application of this technology for the correction of Chronic Granulomatous Disease (XCGD) using patient derived CD34+ cells are currently ongoing. Discussion In conclusions this new strategy may be promising to achieve improved long-term engraftment in patients treated by gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4755-4755
Author(s):  
John Astle ◽  
Yangfei Xiang ◽  
Anthony Rongvaux ◽  
Carla Weibel ◽  
Henchey Elizabeth ◽  
...  

Abstract De novo generation of HSCs has been described as a "holy grail" of stem cell biology, however the factors required for converting human pluripotent stem cells (PSCs) to true hematopoietic stem cells (HSCs) capable of robust long-term engraftment have yet to be fully characterized. Two groups have shown that injection of PSCs into immunodeficient mice leads to teratomas containing niches producing hematopoietic progenitors capable of long-term engraftment. Once these hematopoietic progenitors and their microenvironments are better characterized, this system could be used as a model to help direct in vitro differentiation of PSCs to HSCs. Toward this end, we have injected human PSCs into immunodeficient mice expressing human rather than mouse M-CSF, IL-3, GM-CSF, and thrombopoietin, as well as both human and mouse versions of the "don't eat me signal" Sirpa (collectively termed MISTRG mice). These cytokines are known to support different aspects of hematopoiesis, and thrombopoietin in particular has been shown to support HSC maintenance, suggesting these mice may provide a better environment for human PSC-derived HSCs than the more traditional mice used for human HSC engraftment. The majority of teratomas developed so far in MISTRG contain human hematopoietic cells, and the CD34+ population isolated from over half of the teratomas contained hematopoietic colony forming cells by colony forming assay. These findings further corroborate this approach as a viable method for studying human PSC to HSC differentiation. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 179 (2) ◽  
pp. 643-649 ◽  
Author(s):  
C M Verfaillie ◽  
P M Catanzarro ◽  
W N Li

Factors that induce proliferation of the human hematopoietic stem cell are ill-defined. Primitive hematopoietic progenitors can be maintained and differentiate in stroma-dependent, long-term bone marrow cultures (LTBMC), originally described by Dexter et al. (Dexter, T. M., L. H. Coutinho, E. Spooncer, C. M. Heyworth, C. P. Daniel, R. Schiro, J. Chang, and T. D. Allen. 1990. Molecular Control of Haemopoiesis). However, 70-80% of primitive progenitors capable of reinitiating secondary stromal cultures (LTBMC-initiating cells [IC]) are lost over a period of 5 wk in such cultures. We have recently described a novel "stroma-noncontact" culture system, in which hematopoietic progenitors are separated from the stromal layer by a 0.4-micron microporous filter membrane. Primitive progenitors in such cultures can not only differentiate into committed progenitors, but are also maintained to a greater extent than in "Dexter" cultures. However, still only 50% of the originally seeded LTBMC-IC are recovered at week 5. Since maintenance of primitive progenitors may depend not only on growth-promoting factors but also on factors that inhibit differentiation and/or proliferation, we evaluated the effect of macrophage inflammatory protein 1 alpha (MIP-1 alpha) or "stem cell inhibitor" in combination with the growth-inducing factor interleukin 3 (IL-3) on the recovery of LTBMC-IC from stroma-noncontact cultures. We demonstrate that addition of MIP-1 alpha alone to stroma-noncontact cultures does not change the number of LTBMC-IC present after 8 wk, indicating that this factor may not directly inhibit or stimulate proliferation of primitive progenitors. Addition of the growth stimulatory cytokine, IL-3, alone results in exhaustion of LTBMC-IC after 8 wk of culture, possibly as a result of their terminal differentiation. However, LTBMC-IC can be maintained for at least 8 wk when grown in stroma-noncontact cultures supplemented with both MIP-1 alpha plus IL-3. This effect depends on soluble (ill-defined) stromal factors, and results from a direct interaction of these cytokines with the progenitor population or its progeny, but not the stroma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1657-1657
Author(s):  
Mitsujiro Osawa ◽  
Michael Kyba

Abstract Hematopoietic and endothelial cells are thought to arise from a common progenitor termed the hemangioblast. Direct evidence for the hemangioblast was first obtained from embryonic stem cells differentiated in vitro as embryoid bodies (EBs). Flk-1+ cells from early EBs generate colonies in response to VEGF and SCF (the BL-CFC assay) which can be replated to give secondary hematopoietic or endothelial cells. Bipotent BL-CFCs have also recently been derived from the posterior primitive streak of neural plate stage mouse embryos. However, a direct relationship between the early embryonic hemangioblast defined by the BL-CFC assay and the hematopoietic stem cell remains unproven. Hemangioblast-derived hematopoiesis in vitro is transient and restricted to myelo-erythroid differentiation. Lymphoid potential and long-term repopulation, two hallmarks of the definitive hematopoietic stem cell, have eluded detection to date. Previous work has shown that the homeodomain transcription factor, HoxB4, by enhancing self-renewal in vitro, can reveal latent definitive HSC activity of transient embryonic hematopoietic progenitors. Using an ES cell line with doxycycline-inducible HoxB4 expression, we have investigated the definitive hematopoietic and endothelial potential of individual hemangioblast colonies. BL-CFC numbers were unaffected by HoxB4 expression during EB differentiation, however they were increased threefold by induction during the BL-CFC assay. By replating one half of the cells from an individual blast colony in endothelial medium and the other half on an OP9 monolayer with hematopoietic cytokines, we show that the majority (60%) of HoxB4-induced BL-CFCs are bipotent. HoxB4 expression was compatible with endothelial differentiation and allowed exponential expansion of hematopoietic progenitors on OP9 cocultures. When switched to OP9-DL1 with lymphoid cytokines, T-lymphopoiesis was observed characterized by CD25 expression followed by CD4, CD8, and CD3epsilon expression. To assay long-term repopulation, individual blast colonies were picked and divided into endothelial medium and OP9 monolayers. The hematopoietic arms of colonies defined retrospectively to have been bipotent (endothelial differentiation was observed in vitro) were transplanted into sublethally irradiated Rag2; gamma-c; CD45.1 immunodeficient mice. Mice with long-term hematopoietic engraftment were identified by the presence of CD45.2 cells in peripheral blood 3 months post-transplant. Lymphoid and myeloid contribution was evaluated by costaining with Gr-1, B220, CD19, CD4, and CD8. The donor-derived component of these hematopoietic chimeras, including their entire lymphoid arm (approximately 1/3 of engrafted mice showed lymphoid differentiation) is by definition clonally derived from a single hemangioblast. These results clearly show that the embryonic hemangioblast is not intrinsically limited in its hematopoietic potential. Under conditions that favor self-renewal, lymphoid differentiation and long-term repopulation become evident, revealing the link between endothelial development and definitive hematopoiesis at the clonal level.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1187-1187
Author(s):  
Silvia Thoene ◽  
Vijay P.S. Rawat ◽  
Vegi M. Naidu ◽  
Wolfgang Hiddemann ◽  
Michaela Feuring-Buske ◽  
...  

Abstract Cdx4 is known to be of importance for specification of cell fate in embryonic hematopoiesis with defects leading to severe perturbation of blood formation. When overexpressed in a murine hematopoietic stem cell line, Cdx4 is capable to enhance progenitor formation in vitro and promote lymphoid reconstitution of lethally irradiated, transplanted mice in vivo. In line with this important function of Cdx4 in early hematopoiesis, we analyzed expression of Cdx4 in highly purified subpopulations isolated from murine bone marrow (BM) cells by TaqMan qPCR. Cdx4 showed an expression profile known from other stem cell regulatory genes with high expression in early hematopoietic progenitors followed by decreasing expression towards the more differentiated stages of hematopoiesis, with a more than 1200-fold lower expression in total BM cells compared to progenitor enriched 5-FU BM cells (n=3). To test the impact of Cdx4 on murine progenitors, we retrovirally transduced 5-FU BM cells with Cdx4. Overexpression of Cdx4 induced growth of BM cells in liquid expansion assay (Cdx4 5.7×108±2.2×108 SEM, EGFP 2.6×106±9×105 SEM, p=0.020; cell numbers after 14 days in cytokine supplemented medium, n=5). In addition, expression of Cdx4 conferred serial replating capacity to murine BM progenitors compared to empty vector control (CFU total after 3rd replating: 4.5×109±1.3×109 SEM/500 input cells in 1st CFC, n=5). This effect was significantly stronger compared to hematopoietic progenitors overexpressing the leukemogenic Cdx2 (p=0.008). Immunophenotyping of cells after 3rd replating showed expression of mainly myeloid antigens and cytospin preparation revealed a mature myeloid morphology. Interestingly, these colonies were able to engraft lethally irradiated mice and showed multilineage engraftment (lymphoid:myloid ratio week 16 after transplantation: 0.5:1, n=2), indicating the ability of Cdx4 expressing colonies to maintain stem cell properties in vitro. In contrast to Cdx2-transplanted mice which showed a severe myeloid bias, regular peripheral blood analysis of mice transplanted with Cdx4 overexpressing BM cells showed multilineage engraftment confirmed by immunophenotyping and normal hematological parameters (RBC 6.7×109±4.2×108, WBC 5.8×106±5.19×105; lymphoid:myeloid ratio 1.4:1; week 8–28). Of note, with a median latency of 309 days after transplantation, nine out of ten mice transplanted with Cdx4-transduced BM cells died of transplantable leukemia. In six out of seven cases we found single retroviral integration sites, indicating a monoclonal origin of the disease. We could determine three different integration sites located between 200 and 700 bp upstream of coding sequences (n=4; Opa3, Akap1, Sema4d). The integration sites of two other mice were located intragenic (Zfyve2, Zfp407), indicating that insertional mutagenesis might be a necessary factor for Cdx4 induced leukemogenesis. Moreover, qRT-PCR revealed that Cdx4 in contrast to Cdx2 did not induce ectopic expression of the leukemogenic Hoxb8 and was associated with a significant lower (7.8-fold) expression of the leukemogenic Hoxb6 in transduced murine BM cells. Taken together, these data indicate that Cdx4 plays a major role in the regulation of early hematopoiesis. Its expression profile and its hematopoietic activity in different hematopoietic assays clearly differs from Cdx2, which was shown to be highly leukemogenic in mice and to be ectopically expressed in human AML. Murine models analyzing the impact of Cdx4 and Cdx2 expression on hematopoietic development will help to delineate critical differences between the two related genes.


Sign in / Sign up

Export Citation Format

Share Document