scholarly journals Replication of the top 10 most significant polymorphisms from a large blood pressure genome-wide association study of northeastern Han Chinese East Asians

2013 ◽  
Vol 37 (2) ◽  
pp. 134-138 ◽  
Author(s):  
Yue Qi ◽  
Hongye Zhao ◽  
Yanli Wang ◽  
Yuefei Wang ◽  
Changzhu Lu ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 751
Author(s):  
Hye-Rim Kim ◽  
Hyun-Seok Jin ◽  
Yong-Bin Eom

Hypertension is one of the major risk factors for chronic kidney disease (CKD), and the coexistence of hypertension and CKD increases morbidity and mortality. Although many genetic factors have been identified separately for hypertension and kidney disease, studies specifically focused on hypertensive kidney disease (HKD) have been rare. Therefore, this study aimed to identify loci or genes associated with HKD. A genome-wide association study (GWAS) was conducted using two Korean cohorts, the Health Examinee (HEXA) and Korean Association REsource (KARE). Consequently, 19 single nucleotide polymorphisms (SNPs) were found to be significantly associated with HKD in the discovery and replication phases (p < 5 × 10−8, p < 0.05, respectively). We further analyzed HKD-related traits such as the estimated glomerular filtration rate (eGFR), creatinine, blood urea nitrogen (BUN), systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the 14q21.2 locus, which showed a strong linkage disequilibrium (LD). Expression quantitative trait loci (eQTL) analysis was also performed to determine whether HKD-related SNPs affect gene expression changes in glomerular and arterial tissues. The results suggested that the FANCM gene may affect the development of HKD through an integrated analysis of eQTL and GWAS and was the most significantly associated candidate gene. Taken together, this study indicated that the FANCM gene is involved in the pathogenesis of HKD. Additionally, our results will be useful in prioritizing other genes for further experiments.


2009 ◽  
Vol 41 (6) ◽  
pp. 666-676 ◽  
Author(s):  
Christopher Newton-Cheh ◽  
◽  
Toby Johnson ◽  
Vesela Gateva ◽  
Martin D Tobin ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249997
Author(s):  
Saizheng Weng ◽  
Bo Wang ◽  
Mo Li ◽  
Shan Chao ◽  
Ruiqian Lin ◽  
...  

Second-generation antipsychotics (SGAs) play a critical role in current treatment of schizophrenia (SCZ). It has been observed that sinus bradycardia, rare but in certain situations life threatening adverse drug reaction, can be induced by SGAs across different schizophrenia populations. However, the roles of genetic factors in this phenomenon have not been studied yet. In the present study, a genome-wide association study of single nucleotide polymorphisms (SNPs) was performed on Chinese Han SCZ patients to identify susceptibility loci that were associated with sinus bradycardia induced by SGAs. This study applied microarray to obtain genotype profiles of 88 Han Chinese SCZ patients. Our results found that there were no SNPs had genome-wide significant association with sinus bradycardia induced by SGAs. The top GWAS hit located in gene KIAA0247, which mainly regulated by the tumor suppressor P53 and thus plays a role in carcinogenesis based on resent research and it should not be a susceptibility locus to sinus bradycardia induced by SGAs. Using gene-set functional analysis, we tested that if top 500 SNPs mapped genes were relevant to sinus bradycardia. The result of gene prioritization analysis showed CTNNA3 was strongly correlated with sinus bradycardia, hinting it was a susceptibility gene of this ADR. Our study provides a preliminary study of genetic variants associated with sinus bradycardia induced by SGAs in Han Chinese SCZ patients. The discovery of a possible susceptibility gene shed light on further study of this adverse drug reaction in Han Chinese SCZ patients.


Sign in / Sign up

Export Citation Format

Share Document