scholarly journals Local Cerebral Blood Flow and Glucose Consumption of Rats with Experimental Gliomas

1982 ◽  
Vol 2 (1) ◽  
pp. 25-32 ◽  
Author(s):  
K.-A. Hossmann ◽  
I. Niebuhr ◽  
M. Tamura

Experimental brain tumors were produced in rats by intracerebral implantation of a neoplastic glial cell clone. Within 2–6 weeks, spherical brain tumors developed at the implantation site with a mean diameter of 6 mm. Local blood flow and local glucose utilization were measured under light barbiturate anesthesia by quantitative autoradiography in the tumor and peritumoral brain tissue. In solid parts of the tumor, blood flow was 57.8 ± 2.0 ml/100 g/min (mean ± SE), and glucose utilization was 87.2 ± 5.8 μmol/100 g/min, respectively. In necrotic regions, flow and glucose utilization were zero. In peritumoral brain tissue of the ipsilateral hemisphere blood flow was reduced by 13–23%, as compared to homologous regions of the opposite side, the greatest decrease being recorded in the ipsilateral thalamus. Flow in the opposite hemisphere was of the same order of magnitude as in normal control rats. Glucose consumption, in contrast, was distinctly reduced in both hemispheres: in the cortex and putamen, it was 40–50% lower than in normal controls. The following conclusions are drawn: (1) during tumor development the high glucose consumption in the tumor tissue is not coupled to an equal increase in blood flow; (2) peritumoral cerebral blood flow decreases on the ipsilateral but not on the contralateral side, and (3) the metabolic rate of glucose is distinctly inhibited in both hemispheres of tumor-bearing animals. The dissociation between blood flow and metabolism suggests that metabolic inhibition is not the consequence of a diaschitic depression of functional activity.

1986 ◽  
Vol 6 (1) ◽  
pp. 59-70 ◽  
Author(s):  
G. Mies ◽  
W. Bodsch ◽  
W. Paschen ◽  
K.-A. Hossmann

A triple-tracer autoradiographic technique is described that permits the simultaneous measurement of cerebral blood flow, glucose consumption, and protein synthesis using 131I-iodoantipyrine (131I-IAP), [14C]deoxyclusively from 14C disintegrations without contamination by either 131I or 3H and that represented regional glucose utilization. Brain sections were then wash-incubated for 12 h to remove [14C]DG, [14C]DG-6-phosphate, and free 3H-amino acids from the tissue, and exposed to 3H-sensitive LKB Ultro-film for 2 weeks for autoradiography of 3H-amino acid incorporation into proteins. 14C radioactivity remaining in the tissue section after wash-incubation was determined by exposing sections again for 2 weeks to Kodak NMB film; the resulting contribution to the blackening of 3H-autoradiograms was corrected for by means of digital subtraction using an image-processing system. The triple-tracer autoradiographic technique was validated in rats under various physiological and pathophysiological conditions. In intact animals extinction correction was necessary only for 3H-autoradiograms. Under pathophysiological conditions, however, significant contamination of 131I by 14C occurred in regions with low blood flow and increased glucose utilization rate; this also required correction by digital subtraction. The interpretation of triple-tracer autoradiographic results is limited by the same restrictions as single-tracer autoradiography, but the simultaneous assessment of the three parameters considerably facilitates the interpretation of the flow/metabolic relationship, particularly under pathological conditions.


1992 ◽  
Vol 15 ◽  
pp. 258B
Author(s):  
K. Satoh ◽  
M. Narita ◽  
T. Someya ◽  
S. Takahashi ◽  
T. Suzuki ◽  
...  

2002 ◽  
Vol 197 (1-2) ◽  
pp. 19-26 ◽  
Author(s):  
Tetsujiro Yasuda ◽  
Junya Shigematsu ◽  
Shozo Tobimatsu ◽  
Shosuke Takahashi ◽  
Motohiro Kato

1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


1988 ◽  
Vol 254 (2) ◽  
pp. H250-H257
Author(s):  
H. Schrock ◽  
W. Kuschinsky

Rats were kept on a low-K+ diet for 25 or 70 days. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 31 different structures of the brain by means of the [14C]iodoantipyrine and [14C]2-deoxy-D-glucose method. After 25 and 70 days of K+ depletion LCBF was decreased significantly in 27 and 30 structures, respectively, the average decrease being 19 and 25%. In contrast, average LCGU was not changed. Cisternal cerebrospinal fluid (CSF) K+ concentration decreased significantly from 2.65 +/- 0.02 mM in controls to 2.55 +/- 0.02 mM and 2.47 +/- 0.02 mM in the two treated groups (P less than 0.01). CSF [HCO3-], pH, and PCO2 were increased in K+-depleted animals. These data show that K+ depletion induces an increase in CSF pH and a decrease in CSF K+ concentration, both of which cause a reduction in cerebral blood flow. The increased CSF PCO2 is secondary to the reduction of blood flow, since brain metabolism and arterial PCO2 remained constant.


1993 ◽  
Vol 265 (4) ◽  
pp. H1243-H1248 ◽  
Author(s):  
K. Waschke ◽  
H. Schrock ◽  
D. M. Albrecht ◽  
K. van Ackern ◽  
W. Kuschinsky

The effects of a blood exchange on cerebral blood flow and glucose utilization were studied. A near to total blood exchange (hematocrit < 3%) was achieved in conscious rats by isovolemic hemodilution. Ultrapurified, polymerized, bovine hemoglobin (UPBHB) served as a blood substitute. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 34 brain structures of conscious rats by means of the ido[14C]antipyrine and the 2-[14C]-deoxy-D-glucose methods. A group of rats without blood exchange served as control. After blood exchange LCBF increased from 36 to 126% in the different brain structures resulting in a nearly doubled mean cerebral blood flow (+82%). LCGU increased only moderately by 0-24%. Significant increases in LCGU were observed in 16 brain structures. Mean cerebral glucose utilization slightly increased (+14%). The relationship between LCGU and LCBF was found to be tight both in the control group (r = 0.95) as well as after blood replacement (r = 0.94), although it was reset to a higher overall LCBF-to-LCGU ratio. The profound increases in LCBF observed after blood exchange, which were not paralleled by comparable increases in LCGU, might be explained by a reduction of blood viscosity after blood exchange. Additional effects of blood exchange observed in the present study were an increase of mean arterial blood pressure and a decline of heart rate. The results indicate that replacement of blood with the hemoglobin-based oxygen carrier UPBHB appears to meet the cerebral circulatory and metabolic demands of the brain tissue.


Sign in / Sign up

Export Citation Format

Share Document