scholarly journals Experimental Cerebral Ischemia: Barbiturate Resistant Increase in Regional Glucose Utilization

1988 ◽  
Vol 8 (5) ◽  
pp. 763-766 ◽  
Author(s):  
Maiken Nedergaard ◽  
Nils Henrik Diemer

During the first hours after experimental occlusion of the middle cerebral artery (MCA) cerebral glucose utilization increases in the tissue adjacent to ischemic focus, To test whether the increased glucose utilization was a consequence of increased neuronal activity, the effect of preocclusion pentobarbital administration was investigated, Rats in barbiturate-induced coma showed a metabolic response to MCA occlusion similar to those seen with light halothane anesthesia. This indicates that the enhanced glucose utilization adjacent to the ischemic core is not a result of increased neuronal activity.

1997 ◽  
Vol 17 (12) ◽  
pp. 1266-1280 ◽  
Author(s):  
Ludmila Belayev ◽  
Weizhao Zhao ◽  
Raul Busto ◽  
Myron D. Ginsberg

Using autoradiographic image-averaging strategies, we studied the relationship between local glucose utilization (LCMRglc) and blood flow (LCBF) in a highly reproducible model of transient (2-hour) middle cerebral artery occlusion (MCAO) produced in Sprague-Dawley rats by insertion of an intraluminal suture coated with poly-L-lysine. Neurobehavioral examination at 60 minutes after occlusion substantiated a high-grade deficit in all animals. In two subgroups, LCBF was measured with 14C-iodoantipyrine at either 1.5 hours of MCAO, or at 1 hour of recirculation after suture removal. In two other matched subgroups, LCMRglc was measured with 14C-2-deoxyglucose at 1.5 to 2.25 hours of MCAO, and at 0.75 to 1.5 hours of recirculation after 2 hours of MCAO. Average image data sets were generated for LCBF, LCMRglc, and the LCMRglc/LCBF ratio for each study time. Middle cerebral artery occlusion for 2 hours induced graded LCBF decrements affecting ipsilateral cortical and basal ganglionic regions. After 1 hour of recirculation, LCBF in previously ischemic neocortical regions increased by 40% to 200% above ischemic levels, but remained depressed, on average, at about 40% of control. By contrast, frank hyperemia was noted in the previously ischemic caudoputamen. Mean cortical LCBF values during MCAO correlated highly with their respective LCBF values after 1 hour of recirculation (R = 0.93), suggesting that postischemic LCBF recovery is related to the depth of ischemia. Despite focal ischemia, LCMRglc during ~2 hours of MCAO was preserved, on average, at near-normal levels; but following ~1 h of recirculation, LCMRglc became markedly depressed (on average, 55% of control in previously densely ischemic cortical regions). Regression analysis indicated that this depressed glucose utilization was determined largely by the intensity of antecedent ischemia. By pixel analysis, the ischemic core (defined as LCBF 0% to 20% of control) comprised 33% of the ischemic hemisphere, and the penumbra (LCBF 20% to 40%) accounted for 26%. The penumbra was concentrated at the coronal poles of the ischemic lesion and formed a thin shell around the central ischemic core. During 2 hours of MCAO, the LCMRglc/LCBF ratio within the ischemic penumbra was increased four-fold above normal (average, 179 umol/100 mL). In marked contrast, after ~1 h recirculation, this uncoupling had almost completely subsided. The companion study ( Zhao et al., 1997 ) further analyzes these findings in relation to patterns of infarctive histopathology.


1988 ◽  
Vol 8 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Maiken Nedergaard ◽  
Johannes Jakobsen ◽  
Nils Henrik Diemer

Focal cerebral ischemia was produced by occlusion of the middle cerebral artery in rats. Cerebral blood flow measured with [14C]iodoantipyrine was severely reduced in the lateral portion of neostriatum. This area of dense ischemia was sharply demarcated against the surroundings. The adjacent cortex was perfused at one-third of normal, whereas blood flow in the medial neostriatum was only slightly reduced. This pattern of perfusion was independent of the plasma glucose concentration of the animal. In contrast, the glucose utilization calculated from the 2-[3H]deoxyglucose accumulation depended on the plasma glucose concentration. Enhanced glucose utilization was evident in the border areas surrounding the ischemic focus in normoglycemic animals. Neither acutely nor chronically diabetic animals had such an increase of metabolism in the borderzone. Moderately hyperglycemic rats had a narrow rim of enhanced glucose utilization immediately surrounding the ischemic core, whereas animals with plasma glucose values above 22 mmol/L had no such rim. In mild hypoglycemia (2–4 mmol/L), the glucose utilization was slightly enhanced in the border areas, but during severe hypoglycemia (<2.5 mmol/L), the glucose utilization declined gradually toward the ischemic core. Glucose content, and thereby the lumped constant (measured by 3-0-[14C]methylglucose) showed little regional variation, except in the ischemic core. These findings indicate that blood flow alterations after occlusion of the middle cerebral artery in rats are not influenced by the plasma glucose utilizations. In contrast, glucose utilization depends on a combination of plasma glucose concentration and blood flow instead of blood flow per se.


2014 ◽  
Vol 307 (5) ◽  
pp. H658-H669 ◽  
Author(s):  
Paulo W. Pires ◽  
Saavia S. Girgla ◽  
Guillermo Moreno ◽  
Jonathon L. McClain ◽  
Anne M. Dorrance

Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg−1·day−1 ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.


1996 ◽  
Vol 16 (4) ◽  
pp. 612-622 ◽  
Author(s):  
Ricardo Prado ◽  
Brant D. Watson ◽  
Weizhao Zhao ◽  
Hiroshi Yao ◽  
Raul Busto ◽  
...  

The potential of nitric oxide (NO) to influence positively or negatively the outcome of mechanically induced focal cerebral ischemia is still controversial. Recent evidence suggests that NO of vascular origin, whether synthesized from exogenously administered L-arginine (L-Arg) or from NO donor compounds, is beneficial but that of neuronal origin is not. However, the therapeutic potential of NO to ameliorate stroke induced by arterial thrombosis has not been reported. We assessed the therapeutic effect of L-Arg administration in spontaneously hypertensive rats (SHR) subjected to permanent photothrombotic occlusion of the distal middle cerebral artery (dMCA). The ipsilateral carotid artery was left unligated to enhance L-Arg delivery into the putative penumbral region. Local CBF (LCBF) was assessed at 30 min by the [14C]iodoantipyrine technique (n = 9), while histological infarct volumes and index of peripheral ischemic cell change were determined at 3 days (n = 7). Rats (n = 9) given 300 mg/kg L-Arg at 18 and 3 h before photothrombotic dMCA occlusion and at 5 min afterward displayed no significant differences in LCBF compared with animals (n = 8) injected with water (the carrier vehicle) and similarly irradiated. Infarct volumes were also similar, being 37.0 ± 9.7 mm3 (SD) in the vehicle-treated and 49.1 ± 17.2 mm3 (SD) in the L-Arg-treated groups (both n = 7), as were assessments of ischemic neuronal density in the penumbra. In contrast, L-Arg administered intravenously in a dose of 300 mg/kg to nonischemic SHR (n = 5) increased cortical CBF by ∼75% during a 70-min observation period. We conclude that thrombotic processes superimposed upon cerebral ischemia may facilitate tissue reactions that offset the potentially beneficial effect of L-Arg, and this caveat must be considered when proposing L-Arg for clinical treatment of focal thrombotic stroke.


2021 ◽  
Vol 4 (4) ◽  
pp. 592-612
Author(s):  
Ye Feng ◽  
Qian Xu ◽  
Raymond Tak Fai Cheung

Cerebral ischemia induces oxidative injury and increases the intracellular calcium ion concentration to activate several calcium-dependent proteases such as calpains. Calpain activation leads to various necrotic and apoptotic processes. Calpeptin is a potent, cell-permeable calpain inhibitor. As a strong antioxidant and free radical scavenger, melatonin shows beneficial effect in rodent models of focal cerebral ischemia when given prior to ischemia or reperfusion. This study was focused on the neuroprotective effects of melatonin and/or calpeptin given after onset of reperfusion. For this purpose, right-sided middle cerebral artery occlusion (MCAO) for 90 minutes followed by 24 or 72 hours of reperfusion was performed in male Sprague Dawley rats, then, melatonin 50 or 150 µg/kg, calpeptin 10, 15 or 50 µg/kg or a combination of melatonin 50 µg/kg plus calpeptin 15 or 50 µg/kg were injected via an intracerebroventricular route at 15 minutes after onset of reperfusion. Melatonin or calpeptin tended to reduce the relative infarct volume and significantly decreased the neurological deficit at 24 hours. The combination achieved a greater protection than each of them alone. Melatonin, calpeptin or the combination all decreased Fluoro-Jade B (FJB)+ degenerative neurons and cleaved/total caspase-3 ratio at 24 hours. These treatments did not significantly impact the density of surviving neurons and ED-1+ macrophage/activated microglia. At the 72-hour-reperfusion, melatonin or the combination decreased the relative infarct volume and neurological deficit. Nevertheless, only the combination reduced FJB+ degenerating neurons at 72 hours. In conclusion, a combination of melatonin and calpeptin exerted synergistic protection against post-reperfusion injury in a rat MCAO stroke model.


Sign in / Sign up

Export Citation Format

Share Document