scholarly journals Postnatal Changes in Local Cerebral Blood Flow Measured by the Quantitative Autoradiographic [14C]Iodoantipyrine Technique in Freely Moving Rats

1989 ◽  
Vol 9 (5) ◽  
pp. 579-588 ◽  
Author(s):  
Astrid Nehlig ◽  
Anne Pereira de Vasconcelos ◽  
Sylvette Boyet

The postnatal changes in local cerebral blood flow in freely moving rats were measured by means of the quantitative autoradiographic [14C]iodoantipyrine method. The animals were studied at 10, 14, 17, 21, and 35 days and at the adult stage. At 10 days after birth, rates of blood flow were very low and quite homogeneous in most cerebral structures except in a few posterior areas. From these relatively uniform levels, values of local cerebral blood flow rose notably to reach a peak at 17 days in all brain regions studied. Rates of blood flow decreased between 17 and 21 days after birth and then increased from weaning time to reach the known characteristic distribution of the adult rat. The postnatal evolution of local cerebral blood flow in the rat is in good agreement with previous studies in other species such as dog and humans that also show higher rates of cerebral blood flow and glucose utilization at immature stages. However, in the rat, local cerebral blood flow and local cerebral glucose utilization are not coupled over the whole postnatal period studied, since blood flow rates reach peak values at 17 days whereas glucose utilization remains still quite low at that stage. The high rate of cerebral blood flow in the 17-day-old rat may reflect the energetic and biosynthetic needs of the actively developing brain that are completed by the summation of glucose and ketone body utilization.

1998 ◽  
Vol 89 (6) ◽  
pp. 1480-1488 ◽  
Author(s):  
Christian Lenz ◽  
Annette Rebel ◽  
Klaus van Ackern ◽  
Wolfgang Kuschinsky ◽  
Klaus F. Waschke

Background Compared to isoflurane, knowledge of local cerebral glucose utilization (LCGU) and local cerebral blood flow (LCBF) during sevoflurane anesthesia is limited. Methods LCGU, LCBF, and their overall means were measured in Sprague-Dawley rats (8 groups, n=6 each) during sevoflurane and isoflurane anesthesia, 1 and 2 MAC, and in conscious control animals (2 groups, n=6 each) using the autoradiographic 2-[14C]deoxy-D-glucose and 4-iodo-N-methyl-[14C]antipyrine methods. Results During anesthesia, mean cerebral glucose utilization was decreased: control, 56+/-5 micronmol x 100 g(-1) x min(-1); 1 MAC isoflurane, 32+/-4 micromol x 100 g(-1) x min(-1) (-43%); 1 MAC sevoflurane, 37+/-5 micromol x 100 g(-1) x min(-1) (-34%); 2 MAC isoflurane, 23+/-3 micromol x 100 g(-1) x min(-1) (-58%); 2 MAC sevoflurane, 23+/-5 micromol x 100 g(-1) x min(-1) (-59%). Local analysis showed a reduction in LCGU in the majority of the 40 brain regions analyzed. Mean cerebral blood flow was increased as follows: control 93+/-8 ml x 100 g(-1) x min(-1); 1 MAC isofurane, 119+/-19 ml x 100 g(-1) x min(-1) (+28%); 1 MAC sevoflurane, 104+/-15 ml x 100 g(-1) x min(-1) (+12%); 2 MAC isoflurane, 149+/-17 ml x 100 g(-1) x min(-1) (+60%); 2 MAC sevoflurane, 118+/-21 ml x 100 g(-1) min(-1) (+27%). LCBF was increased in most brain structures investigated. Correlation coefficients obtained for the relationship between LCGU and LCBF were as follows: control 0.93; 1 MAC isoflurane, 0.89; 2 MAC isoflurane, 0.71; 1 MAC sevoflurane, 0.83; 2 MAC sevoflurane, 0.59). Conclusion Mean and local cerebral blood flows were lower during sevoflurane than during isoflurane anesthesia. This difference cannot be explained by differing changes in glucose utilization because glucose utilization was decreased to the same extent in both groups.


2001 ◽  
Vol 94 (2) ◽  
pp. 290-297 ◽  
Author(s):  
Thomas Frietsch ◽  
Ralph Bogdanski ◽  
Manfred Blobner ◽  
Christian Werner ◽  
Wolfgang Kuschinsky ◽  
...  

Background The effects of xenon inhalation on mean and local cerebral blood flow (CBF) and mean and local cerebral glucose utilization (CGU) were investigated using iodo-[14C]antipyrine and [14C]deoxyglucose autoradiography. Methods Rats were randomly assigned to the following groups: conscious controls (n = 12); 30% (n = 12) or 70% xenon (n = 12) for 45 min for the measurement of local CBF and CGU; or 70% xenon for 2 min (n = 6) or 5 min (n = 6) for the measurement of local CBF only. Results Compared with conscious controls, steady state inhalation of 30 or 70% xenon did not result in changes of either local or mean CBF. However, mean CBF increased by 48 and 37% after 2 and 5 min of 70% xenon short inhalation, which was entirely caused by an increased local CBF in cortical brain regions. Mean CGU determined during steady state 30 or 70% xenon inhalation remained unchanged, although local CGU decreased in 7 (30% xenon) and 18 (70% xenon) of the 40 examined brain regions. The correlation between CBF and CGU in 40 local brain structures was maintained during steady state inhalation of both 30 and 70% xenon inhalation, although at an increased slope at 70% xenon. Conclusion Effects of 70% xenon inhalation on CBF in rats are time-dependent. During steady state xenon inhalation (45 min), mean values of CBF and CGU do not differ from control values, and the relation of regional CBF to CGU is maintained, although reset at a higher level.


1992 ◽  
Vol 15 ◽  
pp. 258B
Author(s):  
K. Satoh ◽  
M. Narita ◽  
T. Someya ◽  
S. Takahashi ◽  
T. Suzuki ◽  
...  

1988 ◽  
Vol 254 (2) ◽  
pp. H250-H257
Author(s):  
H. Schrock ◽  
W. Kuschinsky

Rats were kept on a low-K+ diet for 25 or 70 days. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 31 different structures of the brain by means of the [14C]iodoantipyrine and [14C]2-deoxy-D-glucose method. After 25 and 70 days of K+ depletion LCBF was decreased significantly in 27 and 30 structures, respectively, the average decrease being 19 and 25%. In contrast, average LCGU was not changed. Cisternal cerebrospinal fluid (CSF) K+ concentration decreased significantly from 2.65 +/- 0.02 mM in controls to 2.55 +/- 0.02 mM and 2.47 +/- 0.02 mM in the two treated groups (P less than 0.01). CSF [HCO3-], pH, and PCO2 were increased in K+-depleted animals. These data show that K+ depletion induces an increase in CSF pH and a decrease in CSF K+ concentration, both of which cause a reduction in cerebral blood flow. The increased CSF PCO2 is secondary to the reduction of blood flow, since brain metabolism and arterial PCO2 remained constant.


1993 ◽  
Vol 265 (4) ◽  
pp. H1243-H1248 ◽  
Author(s):  
K. Waschke ◽  
H. Schrock ◽  
D. M. Albrecht ◽  
K. van Ackern ◽  
W. Kuschinsky

The effects of a blood exchange on cerebral blood flow and glucose utilization were studied. A near to total blood exchange (hematocrit < 3%) was achieved in conscious rats by isovolemic hemodilution. Ultrapurified, polymerized, bovine hemoglobin (UPBHB) served as a blood substitute. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 34 brain structures of conscious rats by means of the ido[14C]antipyrine and the 2-[14C]-deoxy-D-glucose methods. A group of rats without blood exchange served as control. After blood exchange LCBF increased from 36 to 126% in the different brain structures resulting in a nearly doubled mean cerebral blood flow (+82%). LCGU increased only moderately by 0-24%. Significant increases in LCGU were observed in 16 brain structures. Mean cerebral glucose utilization slightly increased (+14%). The relationship between LCGU and LCBF was found to be tight both in the control group (r = 0.95) as well as after blood replacement (r = 0.94), although it was reset to a higher overall LCBF-to-LCGU ratio. The profound increases in LCBF observed after blood exchange, which were not paralleled by comparable increases in LCGU, might be explained by a reduction of blood viscosity after blood exchange. Additional effects of blood exchange observed in the present study were an increase of mean arterial blood pressure and a decline of heart rate. The results indicate that replacement of blood with the hemoglobin-based oxygen carrier UPBHB appears to meet the cerebral circulatory and metabolic demands of the brain tissue.


2001 ◽  
Vol 11 (4) ◽  
pp. 510-519
Author(s):  
Weizhao Zhao ◽  
Ofelia F. Alonso ◽  
Judith Y. Loor ◽  
Raul Busto ◽  
Myron D. Ginsberg

Object Using autoradiographic image averaging, the authors recently described prominent foci of marked glucose metabolism-greater-than-blood-flow uncoupling in the acutely traumatized rat brain. Because hypothermia is known to ameliorate injury in this and other injury models, the authors designed the present study to assess the effects of post-traumatic therapeutic hypothermia on the local cerebral metabolic rate of glucose (LCMRglu) and local cerebral blood flow (LCBF) following moderate parasagittal fluid-percussion head injury (FPI) in rats. Methods Either cranial hypothermia (30°C) or normothermia (37°C) was induced for 3 hours in matched groups of rats immediately after FPI; LCMRglu and LCBF were assessed 3 hours after concluding these temperature manipulations. In rats subjected to FPI, regardless of whether normothermia or hypothermia ensued, LCBF was reduced relative to the sham-injury groups. In addition, when FPI was followed by hypothermia (FPI–30°C group), the subsequent LCBF was significantly lower (35–38% on average) than in FPI–37°C rats. Statistical mapping of LCBF difference imaging data revealed confluent cortical and subcortical zones of significantly reduced LCBF (largely ipsilateral to the prior injury) in FPI–30°C rats relative to the FPI–37°C group. Local glucose utilization was reduced in both hemispheres of FPI–37°C rats relative to the sham-injury group and was lower in the right (traumatized) hemisphere than in the left. However, LCMRglu values were largely unaffected by temperature manipulation in either the FPI or sham-injury groups. The LCMRglu/LCBF ratio was nearly doubled in FPI–30°C rats relative to the FPI–37°C group, in a diffuse and bihemispheric fashion. Linear regression analysis comparing LCMRglu and LCBF revealed that the FPI–37°C and FPI–30°C data sets were completely nonoverlapping, whereas the two sham-injury data sets were intermixed. Conclusions Despite its proven neuroprotective efficacy, early posttraumatic hypothermia (30°C for 3 hours) nonetheless induces a moderate decline in cerebral perfusion without the (anticipated) improvement in cerebral glucose utilization, so that a state of mild metabolism-greater-than-blood-flow dissociation is perpetuated.


Sign in / Sign up

Export Citation Format

Share Document