scholarly journals Hypoperfusion of the Cerebral White Matter in Multiple Sclerosis: Possible Mechanisms and Pathophysiological Significance

2008 ◽  
Vol 28 (10) ◽  
pp. 1645-1651 ◽  
Author(s):  
Jacques De Keyser ◽  
Christel Steen ◽  
Jop P Mostert ◽  
Marcus W Koch

Multiple sclerosis (MS) is a disease of the central nervous system characterized by patchy areas of demyelination, inflammation, axonal loss and gliosis, and a diffuse axonal degeneration throughout the so-called normal-appearing white matter (NAWM). A number of recent studies using perfusion magnetic resonance imaging in both relapsing and progressive forms of MS have shown a decreased perfusion of the NAWM, which does not appear to be secondary to axonal loss. The reduced perfusion of the NAWM in MS might be caused by a widespread astrocyte dysfunction, possibly related to a deficiency in astrocytic β2-adrenergic receptors and a reduced formation of cAMP, resulting in a reduced uptake of K+ at the nodes of Ranvier and a reduced release of K+ in the perivascular spaces. Pathologic and imaging studies suggest that ischemic changes might be involved in the development of a subtype of focal demyelinating lesions (type III lesions), and there appears to exist a relationship between decreased white matter perfusion and cognitive dysfunction in patients with MS.

2018 ◽  
Vol 24 (8) ◽  
pp. 1133-1137 ◽  
Author(s):  
Maria Teresa Giordana ◽  
Paola Cavalla ◽  
Antonio Uccelli ◽  
Alice Laroni ◽  
Fabio Bandini ◽  
...  

We present the neuropathological description of an autoptic case of fatal rebound of disease activity after fingolimod discontinuation in a multiple sclerosis patient. MRI prior to the fatal outcome showed several large tumefactive demyelinating lesions. These lesions were characterized by prominent astrocytic gliosis, with a remarkable preponderance of large hypertrophic reactive astrocytes showing intense expression of sphingosine-1-phosphate receptor 1. Prominent astrocytic gliosis was also diffusely observed in the normal-appearing white matter. Dysregulated sphingosine-1-phosphate signaling on astrocytes following fingolimod withdrawal might represent a possible contributing mechanism to disease rebound and might account for the unusual radiological and neuropathological features observed in the present case.


2000 ◽  
Vol 47 (3) ◽  
pp. 391-395 ◽  
Author(s):  
Nikos Evangelou ◽  
Margaret M. Esiri ◽  
Steve Smith ◽  
Jackie Palace ◽  
Paul M. Matthews

2020 ◽  
pp. 135245852091897 ◽  
Author(s):  
Svenja Kiljan ◽  
Paolo Preziosa ◽  
Laura E Jonkman ◽  
Wilma DJ van de Berg ◽  
Jos Twisk ◽  
...  

Background: Neuroaxonal degeneration is one of the hallmarks of clinical deterioration in progressive multiple sclerosis (PMS). Objective: To elucidate the association between neuroaxonal degeneration and both local cortical and connected white matter (WM) tract pathology in PMS. Methods: Post-mortem in situ 3T magnetic resonance imaging (MRI) and cortical tissue blocks were collected from 16 PMS donors and 10 controls. Cortical neuroaxonal, myelin, and microglia densities were quantified histopathologically. From diffusion tensor MRI, fractional anisotropy, axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were quantified in normal-appearing white matter (NAWM) and white matter lesions (WML) of WM tracts connected to dissected cortical regions. Between-group differences and within-group associations were investigated through linear mixed models. Results: The PMS donors displayed significant axonal loss in both demyelinated and normal-appearing (NA) cortices ( p < 0.001 and p = 0.02) compared with controls. In PMS, cortical axonal density was associated with WML MD and AD ( p = 0.003; p = 0.02, respectively), and NAWM MD and AD ( p = 0.04; p = 0.049, respectively). NAWM AD and WML AD explained 12.6% and 22.6%, respectively, of axonal density variance in NA cortex. Additional axonal loss in demyelinated cortex was associated with cortical demyelination severity ( p = 0.002), explaining 34.4% of axonal loss variance. Conclusion: Reduced integrity of connected WM tracts and cortical demyelination both contribute to cortical axonal loss in PMS.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Kasper Winther Andersen ◽  
Samo Lasič ◽  
Henrik Lundell ◽  
Markus Nilsson ◽  
Daniel Topgaard ◽  
...  

Abstract Multiple sclerosis leads to diffuse damage of the central nervous system, affecting also the normal-appearing white matter. Demyelination and axonal degeneration reduce regional fractional anisotropy in normal-appearing white matter, which can be routinely mapped with diffusion tensor imaging. However, the standard fractional anisotropy metric is also sensitive to physiological variations in orientation dispersion of white matter fibres. This complicates the detection of disease-related damage in large parts of cerebral white matter where microstructure physiologically displays a high degree of fibre dispersion. To resolve this ambiguity, we employed a novel tensor-valued encoding method for diffusion MRI, which yields a microscopic fractional anisotropy metric that is unaffected by regional variations in orientation dispersion. In 26 patients with relapsing-remitting multiple sclerosis, 14 patients with primary-progressive multiple sclerosis and 27 age-matched healthy controls, we compared standard fractional anisotropy mapping with the novel microscopic fractional anisotropy mapping method, focusing on normal-appearing white matter. Mean microscopic fractional anisotropy and standard fractional anisotropy of normal-appearing white matter were significantly reduced in both patient groups relative to healthy controls, but microscopic fractional anisotropy yielded a better reflection of disease-related white-matter alterations. The reduction in mean microscopic fractional anisotropy showed a significant positive linear relationship with physical disability, as reflected by the expanded disability status scale. Mean reduction of microscopic fractional anisotropy in normal-appearing white matter also scaled positively with individual cognitive dysfunction, as measured with the symbol digit modality test. Mean microscopic fractional anisotropy reduction in normal-appearing white matter also showed a positive relationship with total white-matter lesion load as well as lesion load in specific tract systems. None of these relationships between normal-appearing white-matter microstructure and clinical, cognitive or structural measures emerged when using mean fractional anisotropy. Together, the results provide converging evidence that microscopic fractional anisotropy mapping substantially advances the assessment of cerebral white matter in multiple sclerosis by disentangling microstructure damage from variations in physiological fibre orientation dispersion at the stage of data acquisition. Since tensor-valued encoding can be implemented in routine diffusion MRI, microscopic fractional anisotropy mapping bears considerable potential for the future assessment of disease progression in normal-appearing white matter in both relapsing-remitting and progressive forms of multiple sclerosis as well as other white-matter-related brain diseases.


2021 ◽  
Vol 10 (1) ◽  
pp. 38-44
Author(s):  
Manoj V. Khatokar ◽  
M. Hemanth Kumar ◽  
K. Chandrahas ◽  
M. D. Swetha ◽  
Preeti Satish

Multiple Sclerosis is an inoperable disease of the Central Nervous System (CNS) that irritates the myelin sheath by forming lesions. This affects all organs of the CNS; the vital of them is the brain. This disease can be detected by diagnosis like Magnetic Resonance Imaging (MRI). It is a non-invasive diagnostic test that provides detailed images of the soft tissues of the body. Out of the different variations of MRI, MS lesions are predominantly visible in the DTI (Diffusion Tensor Imaging) variant of MRI. DTI gives enhanced visualization of normal-appearing white matter tracts of the organs, hence providing a better image of the MS lesion. In this paper, the latest methodologies regarding the identification of the MS lesions in MRI scans like T2 FLAIR or DTI, using automated techniques like deep learning, computer vision, neural network and many more are surveyed. Furthermore, this paper consists of a proposed model which would focus on correlating the lesions found in DTI scan with the basic MRI scan like T2. It would identify the MS lesion in DTI scan and eventually highlight that lesion position in the T2 image scan. This would help radiologist in a way to effectively handle multiple MRI scans.


Sign in / Sign up

Export Citation Format

Share Document