Reductions in commuter exposure to volatile organic compounds in Mexico City due to the environmental program ProAire2002–2010

2016 ◽  
Vol 27 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Naohide Shinohara ◽  
Felipe Ángeles ◽  
Roberto Basaldud ◽  
Beatriz Cardenas ◽  
Shinji Wakamatsu
2006 ◽  
Vol 40 (27) ◽  
pp. 5125-5136 ◽  
Author(s):  
Henry Wöhrnschimmel ◽  
Claudia Márquez ◽  
Violeta Mugica ◽  
Werner A. Stahel ◽  
Johannes Staehelin ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 14273-14309 ◽  
Author(s):  
T. Karl ◽  
E. Apel ◽  
A. Hodzic ◽  
D. Riemer ◽  
D. Blake ◽  
...  

Abstract. Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-average midday toluene and benzene fluxes are calculated to be on the order of 15.5±4.0 mg/m2/h and 4.7±2.3 mg/m2/h respectively. These values argue for an underestimation of toluene and benzene emissions in current inventories used for the Mexico City Metropolitan Area (MCMA). Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15) including the International airport (e.g. 3–5) and a mean flux (concentration) ratio of 3.2±0.5 (3.9±0.3) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (Benzene/Toluene/Ethylbenzene/m,p,o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >90% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds (0–10%) in the MCMA.


2020 ◽  
Vol 6 ◽  
pp. 825-830 ◽  
Author(s):  
V. Mugica-Alvarez ◽  
C.A. Martínez-Reyes ◽  
N.M. Santiago-Tello ◽  
I. Martínez-Rodríguez ◽  
M. Gutiérrez-Arzaluz ◽  
...  

2004 ◽  
Vol 46 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Sharon Lemire ◽  
David Ashley ◽  
Patricia Olaya ◽  
Isabelle Romieu ◽  
Susan Welch ◽  
...  

2010 ◽  
Vol 10 (18) ◽  
pp. 9027-9037 ◽  
Author(s):  
H. Wöhrnschimmel ◽  
M. Magaña ◽  
W. A. Stahel ◽  
S. Blanco ◽  
S. Acuña ◽  
...  

Abstract. Ambient samples of volatile organic compounds (VOCs) were measured between 2000 and 2007 in Southeastern Mexico City, quantifying 13 species (ethane, propane, propylene, butane, acetylene, pentane, hexane, heptane, benzene, octane, toluene, nonane, o-xylene). These time series were analyzed for long-term trends, using linear regression models. A main finding was that the concentrations for several VOC species were decreasing during this period. A receptor model was applied to identify possible VOC sources, as well as temporal patterns in their respective contributions. Domestic use of liquefied petroleum gas (LPG) and vehicle exhaust are suggested to be the principal emission sources, contributing together between 70% and 80% to the total of quantified species. Both diurnal and seasonal patterns, as well as a weekend effect were recognized in the modelled source contributions. Furthermore, decreasing trends over time were found for LPG and hot soak (−7.8% and −12.7% per year, respectively, p < 0.01), whereas for vehicle exhaust no significant trend was found.


2009 ◽  
Vol 9 (6) ◽  
pp. 24085-24143 ◽  
Author(s):  
E. C. Apel ◽  
L. K. Emmons ◽  
T. Karl ◽  
F. Flocke ◽  
A. J. Hills ◽  
...  

Abstract. The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18~March and the NCAR C130 one day later on 19~March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19~March plume and to help interpret the OH reactivity in the downwind plume. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes downwind. A box model with detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1–2~day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.


Sign in / Sign up

Export Citation Format

Share Document