scholarly journals Effects of reduced renal perfusion pressure and acute volume expansion on proximal tubule and whole kidney angiotensin II content in the rat

1997 ◽  
Vol 51 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Walther H. Boer ◽  
Branko Braam ◽  
René Fransen ◽  
Peter Boer ◽  
Hein A. Koomans
1997 ◽  
Vol 273 (2) ◽  
pp. F307-F314 ◽  
Author(s):  
R. Loutzenhiser ◽  
L. Chilton ◽  
G. Trottier

An adaptation of the in vitro perfused hydronephrotic rat kidney model allowing in situ measurement of arteriolar membrane potentials is described. At a renal perfusion pressure of 80 mmHg, resting membrane potentials of interlobular arteries (22 +/- 2 microns) and afferent (14 +/- 1 microns) and efferent arterioles (12 +/- 1 microns) were -40 +/- 2 (n = 8), -40 +/- 1 (n = 45), and -38 +/- 2 mV (n = 22), respectively (P = 0.75). Using a dual-pipette system to stabilize the impalement site, we measured afferent and efferent arteriolar membrane potentials during angiotensin II (ANG II)-induced vasoconstriction. ANG II (0.1 nM) reduced afferent arteriolar diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.005) and membrane potentials from -40 +/- 2 to -29 +/- mV (P = 0.012). ANG II elicited a similar vasoconstriction in efferent arterioles, decreasing diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.004), but failed to elicit a significant depolarization (-39 +/- 2 for control; -36 +/- 3 mV for ANG II; P = 0.27). Our findings thus indicate that resting membrane potentials of pre- and postglomerular arterioles are similar and lie near the threshold activation potential for L-type Ca channels. ANG II-induced vasoconstriction appears to be closely coupled to membrane depolarization in the afferent arteriole, whereas mechanical and electrical responses appear to be dissociated in the efferent arteriole.


1994 ◽  
Vol 72 (7) ◽  
pp. 782-787 ◽  
Author(s):  
L. Fan ◽  
S. Mukaddam-Daher ◽  
J. Gutkowska ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To further investigate the influence of renal nerves on renin secretion, the renin secretion responses to step reductions of renal perfusion pressure (RPP) were studied in conscious sheep with innervated kidneys (n = 5) and with bilaterally denervated kidneys (n = 5). The average basal level of RPP in sheep with denervated kidneys (82 ± 4 mmHg; 1 mmHg = 133.3 Pa) was similar to that in sheep with innervated kidneys (83 ± 3 mmHg). RPP was reduced in four sequential 15-min steps, to a final level of 54 ± 2 mmHg in sheep with innervated kidneys and to 57 ± 1 mmHg in denervated sheep. The renin secretion rate was increased as RPP was reduced in sheep with innervated kidneys. Baseline peripheral plasma renin activity was reduced and there was almost no response of renin secretion rate to reduction of RPP in sheep with denervated kidneys. Also, baseline renal blood flow, urine flow rate, sodium excretion rate, and potassium excretion rate were higher in sheep with denervated kidneys than those with innervated kidneys. Baseline plasma angiotensin II was similar in both groups of sheep. As RPP was decreased, plasma angiotensin II was increased in sheep with innervated kidneys, but was not significantly altered in sheep with denervated kidneys. Plasma atrial natriuretic factor was unaltered by either reduction of RPP or renal denervation. In conclusion, hormonal factors, such as angiotensin II and atrial natriuretic factor, do not account for the dramatic suppression of renin secretion in response to the reduction of RPP in sheep with bilateral renal denervation. Renal nerves are a necessary component in the control of renin secretion during reduction of RPP and may contribute to the regulation of baseline plasma renin activity and sodium excretion rate in conscious ewes.Key words: renin secretion, renal perfusion pressure, renal nerves, denervation, sheep.


1995 ◽  
Vol 269 (3) ◽  
pp. R481-R489 ◽  
Author(s):  
W. Boemke ◽  
E. Seeliger ◽  
L. Rothermund ◽  
M. Corea ◽  
R. Pettker ◽  
...  

Two groups of six dogs were studied during 4 control days and 4 days of reduced renal perfusion pressure (rRPP) servo controlled at 20% below the individual dog's 24-h mean arterial blood pressure (MABP) during control days, i.e., below the threshold for renin release. On rRPP days, endogenous activation of plasma aldosterone and angiotensin II was inhibited by the angiotensin-converting enzyme inhibitor captopril. The dogs were kept on a high-Na and high-water intake. Unlike studies during rRPP alone, there was no Na and water retention during rRPP+captopril. Glomerular filtration rate dropped by approximately 9%, and MABP remained in the range of control days. Plasma renin activity rose to values 14 times greater than control, whereas plasma aldosterone decreased by approximately 60%. Atrial natriuretic peptide remained in the range of controls. In conclusion, angiotensin-converting enzyme inhibition can prevent the otherwise obligatory Na and water retention and systemic MABP increase during a 20% reduction in renal perfusion pressure. This is achieved most likely via the captopril-induced fall in angiotensin II and plasma aldosterone levels.


1986 ◽  
Vol 250 (3) ◽  
pp. F425-F429 ◽  
Author(s):  
J. A. Haas ◽  
J. P. Granger ◽  
F. G. Knox

Previous studies in rats have demonstrated that superficial proximal tubule sodium reabsorption does not change in response to alterations in renal perfusion pressure (RPP). The first objective of the present study was to estimate sodium reabsorption in response to acute changes in RPP utilizing fractional lithium reabsorption (FRLi) as an index of fractional sodium reabsorption (FRNa) by the proximal tubule of the kidney as a whole. FRLi decreased in response to increases in RPP, suggesting that sodium reabsorption by the proximal tubule of some nephron population is decreased. Therefore, the second objective of the present study was to test the hypothesis that superficial and deep proximal tubules respond differently to changes in RPP by comparing proximal tubule sodium reabsorption from both nephron populations. In response to an acute change in RPP from 114 +/- 4 to 138 +/- 5 mmHg, FRNa by the proximal tubule and descending limb of Henle's loop in deep nephrons decreased from 71.3 +/- 2.3 to 55.8 +/- 5.6%, but FRNa by the superficial late proximal tubule was not changed: (44.3 +/- 4.8 to 45.1 +/- 3.9%). The urinary fractional reabsorption of sodium decreased from 96.7 +/- 0.6 to 94.5 +/- 0.5%. In summary, these studies demonstrate that increases in RPP have no effect on sodium reabsorption by the proximal tubule of superficial nephrons. In contrast, sodium delivery to the point of micropuncture in the descending limb of Henle's loop of deep nephrons was increased, suggesting inhibition of sodium reabsorption by proximal tubules of deep nephrons in response to increases in RPP.


2020 ◽  
Vol 318 (6) ◽  
pp. F1400-F1408 ◽  
Author(s):  
Supaporn Kulthinee ◽  
Weijian Shao ◽  
Martha Franco ◽  
L. Gabriel Navar

In ANG II-dependent hypertension, ANG II activates ANG II type 1 receptors (AT1Rs), elevating blood pressure and increasing renal afferent arteriolar resistance (AAR). The increased arterial pressure augments interstitial ATP concentrations activating purinergic P2X receptors (P2XRs) also increasing AAR. Interestingly, P2X1R and P2X7R inhibition reduces AAR to the normal range, raising the conundrum regarding the apparent disappearance of AT1R influence. To evaluate the interactions between P2XRs and AT1Rs in mediating the increased AAR elicited by chronic ANG II infusions, experiments using the isolated blood perfused juxtamedullary nephron preparation allowed visualization of afferent arteriolar diameters (AAD). Normotensive and ANG II-infused hypertensive rats showed AAD responses to increases in renal perfusion pressure from 100 to 140 mmHg by decreasing AAD by 26 ± 10% and 19 ± 4%. Superfusion with the inhibitor P2X1Ri (NF4490; 1 μM) increased AAD. In normotensive kidneys, superfusion with ANG II (1 nM) decreased AAD by 16 ± 4% and decreased further by 19 ± 5% with an increase in renal perfusion pressure. Treatment with P2X1Ri increased AAD by 30 ± 6% to values higher than those at 100 mmHg plus ANG II. In hypertensive kidneys, the inhibitor AT1Ri (SML1394; 1 μM) increased AAD by 10 ± 7%. In contrast, treatment with P2X1Ri increased AAD by 21 ± 14%; combination with P2X1Ri plus P2X7Ri (A438079; 1 μM) increased AAD further by 25 ± 8%. The results indicate that P2X1R, P2X7R, and AT1R actions converge at receptor or postreceptor signaling pathways, but P2XR exerts a dominant influence abrogating the actions of AT1Rs on AAR in ANG II-dependent hypertension.


1997 ◽  
Vol 273 (5) ◽  
pp. R1676-R1682 ◽  
Author(s):  
María Isabel Madrid ◽  
Miguel García-Salom ◽  
Jerónimo Tornel ◽  
Marc De Gasparo ◽  
Francisco J. Fenoy

The present study examined the effect of an angiotensin II AT1 or AT2 receptor antagonist on the impairment of the pressure diuresis and natriuresis response produced by nitric oxide (NO) synthesis blockade. N ω-nitro-l-arginine methyl ester (l-NAME, 37 nmol ⋅ kg−1 ⋅ min−1) lowered renal blood flow and reduced the slopes of the pressure diuresis and natriuresis responses by 44 and 40%, respectively. Blockade of AT1 receptors with valsartan increased slightly sodium and water excretion at low renal perfusion pressure (RPP). Blockade of AT2 receptors with PD-123319 had no effect on renal function. The administration of valsartan or PD-123319 to rats given l-NAME had no effect on the renal vasocontriction induced by NO synthesis blockade. In addition, in rats givenl-NAME, valsartan elevated baseline excretory values at all RPP studied, but it had no effect on the sensitivity of the pressure diuresis and natriuresis response. However, the administration of PD-123319 tol-NAME-pretreated rats shifted the slopes of the pressure diuresis and natriuresis responses toward control values, indicating that the impairment produced by NO synthesis blockade on pressure diuresis is dependent on the activation of AT2 angiotensin receptors.


2009 ◽  
Vol 297 (5) ◽  
pp. F1324-F1329 ◽  
Author(s):  
Douglas R. Yingst ◽  
Ali Araghi ◽  
Tabitha M. Doci ◽  
Raymond Mattingly ◽  
William H. Beierwaltes

To understand how rapid changes in blood pressure can regulate Na-K-ATPase in the kidney cortex, we tested the hypothesis that a short-term (5 min) decrease in renal perfusion pressure will increase the amount of Na-K-ATPase in the plasma membranes by an angiotensin II-dependent mechanism. The abdominal aorta of anesthetized Sprague-Dawley rats was constricted with a ligature between the renal arteries, and pressure was monitored on either side during acute constriction. Left renal perfusion pressure was reduced to 70 ± 1 mmHg ( n = 6), whereas right renal perfusion pressure was 112 ± 4 mmHg. In control (nonconstricted) rats ( n = 5), pressure to both kidneys was similar at 119 ± 6 mmHg. After 5 min of reduced perfusion, femoral venous samples were taken for plasma renin activity (PRA) and the kidneys excised. The cortex was dissected, minced, sieved, and biotinylated. Lower perfusion left kidneys showed a 41% increase ( P < 0.003) in the amount of Na-K-ATPase in the plasma membrane compared with right kidneys. In controls, there was no difference in cell surface Na-K-ATPase between left and right kidneys ( P = 0.47 ). PRA was 57% higher in experimental animals compared with controls. To test the role of angiotensin II in mediating the increase in Na-K-ATPase, we repeated the experiments ( n = 6) in rats treated with ramiprilat. When angiotensin-converting enzyme was inhibited, the cell surface Na-K-ATPase of the two kidneys was equal ( P =0.46 ). These results confirm our hypothesis: rapid changes in blood pressure regulate trafficking of Na-K-ATPase in the kidney cortex.


2013 ◽  
Vol 305 (8) ◽  
pp. F1189-F1200 ◽  
Author(s):  
Ina Maria Schießl ◽  
Hayo Castrop

In this study, we assessed the acute effects of angiotensin II on the albumin glomerular sieving coefficient (GSC) using intravital microscopy. The experiments were performed on Munich Wistar Froemter (MWF) rats. Alexa-Fluor-594 albumin was injected intravenously, and the fluorescence intensity in the glomerular capillaries and Bowman's space was determined to calculate the albumin GSC. The GSC was measured before and during the constant infusion of angiotensin II (10 ng·min−1·kg−1body wt). Baseline mean arterial pressure (MAP) was 99 ± 5 mmHg and stabilized at 137 ± 5 mmHg during angiotensin II infusion. The baseline GSC averaged 0.00044 ± 4.8 × 10−5and increased by 286 ± 44% after angiotensin II infusion ( P < 0.0001). The proximal tubular Alexa-Fluor-594 albumin uptake was enhanced during angiotensin II infusion (518% of the baseline value during angiotensin II vs. 218% in controls; P < 0.0001). No change in GSC was observed when the AT1antagonist losartan was injected before the start of angiotensin II infusion. The AT2antagonist PD123319 increased the baseline GSC from 0.00052 ± 3.6 × 10−5to 0.00074 ± 8.2 × 10−5( P = 0.02) without altering the MAP. During angiotensin II infusion with losartan, PD123319 increased the albumin GSC from 0.00037 ± 5.8 × 10−5to 0.00115 ± 0.00015 ( P = 0.001). When the renal perfusion pressure was mechanically controlled, the GSC increased from 0.0007 ± 0.00019 to 0.0025 ± 0.00063 during angiotensin II infusion ( P = 0.047), similar to what was observed when the renal perfusion pressure was allowed to increase. In summary, AT1activation acutely increases the albumin GSC. This effect appears to be largely independent of changes in the renal perfusion pressure. The AT2receptor partially attenuates the proteinuric effects of the AT1receptor.


Sign in / Sign up

Export Citation Format

Share Document