scholarly journals Decreased renal perfusion rapidly increases plasma membrane Na-K-ATPase in rat cortex by an angiotensin II-dependent mechanism

2009 ◽  
Vol 297 (5) ◽  
pp. F1324-F1329 ◽  
Author(s):  
Douglas R. Yingst ◽  
Ali Araghi ◽  
Tabitha M. Doci ◽  
Raymond Mattingly ◽  
William H. Beierwaltes

To understand how rapid changes in blood pressure can regulate Na-K-ATPase in the kidney cortex, we tested the hypothesis that a short-term (5 min) decrease in renal perfusion pressure will increase the amount of Na-K-ATPase in the plasma membranes by an angiotensin II-dependent mechanism. The abdominal aorta of anesthetized Sprague-Dawley rats was constricted with a ligature between the renal arteries, and pressure was monitored on either side during acute constriction. Left renal perfusion pressure was reduced to 70 ± 1 mmHg ( n = 6), whereas right renal perfusion pressure was 112 ± 4 mmHg. In control (nonconstricted) rats ( n = 5), pressure to both kidneys was similar at 119 ± 6 mmHg. After 5 min of reduced perfusion, femoral venous samples were taken for plasma renin activity (PRA) and the kidneys excised. The cortex was dissected, minced, sieved, and biotinylated. Lower perfusion left kidneys showed a 41% increase ( P < 0.003) in the amount of Na-K-ATPase in the plasma membrane compared with right kidneys. In controls, there was no difference in cell surface Na-K-ATPase between left and right kidneys ( P = 0.47 ). PRA was 57% higher in experimental animals compared with controls. To test the role of angiotensin II in mediating the increase in Na-K-ATPase, we repeated the experiments ( n = 6) in rats treated with ramiprilat. When angiotensin-converting enzyme was inhibited, the cell surface Na-K-ATPase of the two kidneys was equal ( P =0.46 ). These results confirm our hypothesis: rapid changes in blood pressure regulate trafficking of Na-K-ATPase in the kidney cortex.

1995 ◽  
Vol 269 (1) ◽  
pp. F134-F139 ◽  
Author(s):  
W. H. Beierwaltes

The macula densa is a regulatory site for renin. It contains exclusively the neuronal isoform of nitric oxide synthase (NOS), suggesting NO could stimulate renin secretion through the macula densa pathway. To test whether neuronal NOS mediates renin secretion, renin was stimulated by either the renal baroreceptor or the diuretic furosemide (acting through the macula densa pathway). Renin secretion rate (RSR) was measured in 12 Inactin-anesthetized rats at normal (104 +/- 3 mmHg) and reduced renal perfusion pressure (65 +/- 1 mmHg), before and after selective blockade of the neuronal NOS with 7-nitroindazole (7-NI, 50 mg/kg ip). 7-NI had no effect on basal blood pressure (102 +/- 2 mmHg) or renal blood flow (RBF). Decreasing renal perfusion pressure doubled RSR from 11.8 +/- 3.3 to 22.9 +/- 5.7 ng ANG I.h-1.min-1 (P < 0.01) (ANG I is angiotensin I). Similarly, in 7-NI-treated rats, reduced perfusion doubled RSR from 8.5 +/- 1.8 to 20.5 +/- 6.2 ng ANG I.h-1.min-1 (P < 0.01). Renal hemodynamics and RSR were measured in response to 5 mg/kg iv furosemide in 12 control rats and 11 rats treated with 7-NI. Blocking neuronal NOS did not alter blood pressure (102 +/- 2 mmHg), RBF (5.8 +/- 0.4 ml.min-1.g kidney wt-1), or renal vascular resistance (18.7 +/- 1.4 mmHg.ml-1.min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (2) ◽  
pp. F307-F314 ◽  
Author(s):  
R. Loutzenhiser ◽  
L. Chilton ◽  
G. Trottier

An adaptation of the in vitro perfused hydronephrotic rat kidney model allowing in situ measurement of arteriolar membrane potentials is described. At a renal perfusion pressure of 80 mmHg, resting membrane potentials of interlobular arteries (22 +/- 2 microns) and afferent (14 +/- 1 microns) and efferent arterioles (12 +/- 1 microns) were -40 +/- 2 (n = 8), -40 +/- 1 (n = 45), and -38 +/- 2 mV (n = 22), respectively (P = 0.75). Using a dual-pipette system to stabilize the impalement site, we measured afferent and efferent arteriolar membrane potentials during angiotensin II (ANG II)-induced vasoconstriction. ANG II (0.1 nM) reduced afferent arteriolar diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.005) and membrane potentials from -40 +/- 2 to -29 +/- mV (P = 0.012). ANG II elicited a similar vasoconstriction in efferent arterioles, decreasing diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.004), but failed to elicit a significant depolarization (-39 +/- 2 for control; -36 +/- 3 mV for ANG II; P = 0.27). Our findings thus indicate that resting membrane potentials of pre- and postglomerular arterioles are similar and lie near the threshold activation potential for L-type Ca channels. ANG II-induced vasoconstriction appears to be closely coupled to membrane depolarization in the afferent arteriole, whereas mechanical and electrical responses appear to be dissociated in the efferent arteriole.


1994 ◽  
Vol 72 (7) ◽  
pp. 782-787 ◽  
Author(s):  
L. Fan ◽  
S. Mukaddam-Daher ◽  
J. Gutkowska ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To further investigate the influence of renal nerves on renin secretion, the renin secretion responses to step reductions of renal perfusion pressure (RPP) were studied in conscious sheep with innervated kidneys (n = 5) and with bilaterally denervated kidneys (n = 5). The average basal level of RPP in sheep with denervated kidneys (82 ± 4 mmHg; 1 mmHg = 133.3 Pa) was similar to that in sheep with innervated kidneys (83 ± 3 mmHg). RPP was reduced in four sequential 15-min steps, to a final level of 54 ± 2 mmHg in sheep with innervated kidneys and to 57 ± 1 mmHg in denervated sheep. The renin secretion rate was increased as RPP was reduced in sheep with innervated kidneys. Baseline peripheral plasma renin activity was reduced and there was almost no response of renin secretion rate to reduction of RPP in sheep with denervated kidneys. Also, baseline renal blood flow, urine flow rate, sodium excretion rate, and potassium excretion rate were higher in sheep with denervated kidneys than those with innervated kidneys. Baseline plasma angiotensin II was similar in both groups of sheep. As RPP was decreased, plasma angiotensin II was increased in sheep with innervated kidneys, but was not significantly altered in sheep with denervated kidneys. Plasma atrial natriuretic factor was unaltered by either reduction of RPP or renal denervation. In conclusion, hormonal factors, such as angiotensin II and atrial natriuretic factor, do not account for the dramatic suppression of renin secretion in response to the reduction of RPP in sheep with bilateral renal denervation. Renal nerves are a necessary component in the control of renin secretion during reduction of RPP and may contribute to the regulation of baseline plasma renin activity and sodium excretion rate in conscious ewes.Key words: renin secretion, renal perfusion pressure, renal nerves, denervation, sheep.


2018 ◽  
Vol 50 (6) ◽  
pp. 440-447 ◽  
Author(s):  
Louise C. Evans ◽  
Alex Dayton ◽  
Chun Yang ◽  
Pengyuan Liu ◽  
Theresa Kurth ◽  
...  

Studies exploring the development of hypertension have traditionally been unable to distinguish which of the observed changes are underlying causes from those that are a consequence of elevated blood pressure. In this study, a custom-designed servo-control system was utilized to precisely control renal perfusion pressure to the left kidney continuously during the development of hypertension in Dahl salt-sensitive rats. In this way, we maintained the left kidney at control blood pressure while the right kidney was exposed to hypertensive pressures. As each kidney was exposed to the same circulating factors, differences between them represent changes induced by pressure alone. RNA sequencing analysis identified 1,613 differently expressed genes affected by renal perfusion pressure. Three pathway analysis methods were applied, one a novel approach incorporating arterial pressure as an input variable allowing a more direct connection between the expression of genes and pressure. The statistical analysis proposed several novel pathways by which pressure affects renal physiology. We confirmed the effects of pressure on p-Jnk regulation, in which the hypertensive medullas show increased p-Jnk/Jnk ratios relative to the left (0.79 ± 0.11 vs. 0.53 ± 0.10, P < 0.01, n = 8). We also confirmed pathway predictions of mitochondrial function, in which the respiratory control ratio of hypertensive vs. control mitochondria are significantly reduced (7.9 ± 1.2 vs. 10.4 ± 1.8, P < 0.01, n = 6) and metabolomic profile, in which 14 metabolites differed significantly between hypertensive and control medullas ( P < 0.05, n = 5). These findings demonstrate that subtle differences in the transcriptome can be used to predict functional changes of the kidney as a consequence of pressure elevation.


1992 ◽  
Vol 262 (3) ◽  
pp. R524-R529 ◽  
Author(s):  
N. D. Binder ◽  
D. F. Anderson

We examined the relationship between acute reductions in renal perfusion pressure, as approximated by femoral arterial blood pressure, and plasma renin activity in the uninephrectomized fetal lamb. Renal perfusion pressure was reduced and maintained at a constant value by controlled partial occlusion of the aorta above the renal artery. After 15 min of reduced blood pressure, blood samples were taken for determination of plasma renin activity. This protocol was performed 22 times in 11 fetal lambs. Additionally, three of the fetuses were delivered by cesarean section and studied as newborns for the first week of life. In the fetus, there was a linear relationship between log plasma renin activity and femoral arterial blood pressure (P less than 0.01). After birth, the relationship still existed, although it was shifted to the right (P less than 0.0001). We conclude that there is a significant relationship between plasma renin activity and renal perfusion pressure in the fetal lamb, and as early as 1 day after birth, this relationship shifts to the right in the newborn lamb.


1995 ◽  
Vol 269 (3) ◽  
pp. R481-R489 ◽  
Author(s):  
W. Boemke ◽  
E. Seeliger ◽  
L. Rothermund ◽  
M. Corea ◽  
R. Pettker ◽  
...  

Two groups of six dogs were studied during 4 control days and 4 days of reduced renal perfusion pressure (rRPP) servo controlled at 20% below the individual dog's 24-h mean arterial blood pressure (MABP) during control days, i.e., below the threshold for renin release. On rRPP days, endogenous activation of plasma aldosterone and angiotensin II was inhibited by the angiotensin-converting enzyme inhibitor captopril. The dogs were kept on a high-Na and high-water intake. Unlike studies during rRPP alone, there was no Na and water retention during rRPP+captopril. Glomerular filtration rate dropped by approximately 9%, and MABP remained in the range of control days. Plasma renin activity rose to values 14 times greater than control, whereas plasma aldosterone decreased by approximately 60%. Atrial natriuretic peptide remained in the range of controls. In conclusion, angiotensin-converting enzyme inhibition can prevent the otherwise obligatory Na and water retention and systemic MABP increase during a 20% reduction in renal perfusion pressure. This is achieved most likely via the captopril-induced fall in angiotensin II and plasma aldosterone levels.


1984 ◽  
Vol 246 (6) ◽  
pp. F828-F834 ◽  
Author(s):  
L. I. Kleinman ◽  
R. O. Banks

Pressure natriuresis was studied in anesthetized saline-expanded adult (n = 10) and neonatal (n = 23) dogs. One group (protocol B) received ethacrynic acid and amiloride to block distal nephron function. Studies in the other group (protocol A) were done without diuretics. Renal arterial blood pressure was raised by bilateral carotid artery occlusion. Renal perfusion pressure was then lowered in steps by partially occluding the aorta proximal to the renal arteries. In protocol B carotid occlusion was associated with an increase in both absolute and fractional sodium excretion by adult and newborn dogs. Moreover, there was significant negative correlation (P less than 0.01) between absolute change in renal arterial pressure and change in tubular reabsorption of sodium per milliliter glomerular filtrate for both age groups. For each mmHg increase in blood pressure there was greater inhibition of sodium reabsorption in the puppy (0.55 mueq/ml glomerular filtrate) than in the adult (0.18 mueq/ml, P less than 0.05). In protocol A puppies, the inhibition of sodium reabsorption due to increases in renal perfusion pressure was less than that occurring in protocol B, indicating that some of the sodium escaping proximal nephron reabsorption was reabsorbed distally. Results of these studies indicate that during saline expansion pressure natriuresis is primarily a proximal tubular event, and the sensitivity of the proximal tubule to changes in renal arterial blood pressure is greater in the newborn than the adult kidney.


2017 ◽  
Vol 126 (2) ◽  
pp. 321-324
Author(s):  
Edward D. Miller

Abstract Inhibition of Angiotensin Conversion in Experimental Renovascular Hypertension. By Miller ED Jr, Samuels A, Haber E, and Barger AC. Science 1972; 177:1108–9. Reprinted with permission from AAAS. Constriction of the renal artery and controlled reduction of renal perfusion pressure is followed by a prompt increase in systemic renin activity and a concomitant rise in blood pressure in trained, unanesthetized dogs. The elevated blood pressure induced by the renal artery stenosis can be prevented by prior treatment with the nonapeptide Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro, which blocks conversion of angiotensin I to angiotensin II. Further, the nonapeptide can restore systemic pressure to normal in the early phase of renovascular hypertension. These results offer strong evidence that the renin– angiotensin system is responsible for the initiation of hypertension in the unilaterally nephrectomized dog with renal artery constriction.


2020 ◽  
Vol 318 (6) ◽  
pp. F1400-F1408 ◽  
Author(s):  
Supaporn Kulthinee ◽  
Weijian Shao ◽  
Martha Franco ◽  
L. Gabriel Navar

In ANG II-dependent hypertension, ANG II activates ANG II type 1 receptors (AT1Rs), elevating blood pressure and increasing renal afferent arteriolar resistance (AAR). The increased arterial pressure augments interstitial ATP concentrations activating purinergic P2X receptors (P2XRs) also increasing AAR. Interestingly, P2X1R and P2X7R inhibition reduces AAR to the normal range, raising the conundrum regarding the apparent disappearance of AT1R influence. To evaluate the interactions between P2XRs and AT1Rs in mediating the increased AAR elicited by chronic ANG II infusions, experiments using the isolated blood perfused juxtamedullary nephron preparation allowed visualization of afferent arteriolar diameters (AAD). Normotensive and ANG II-infused hypertensive rats showed AAD responses to increases in renal perfusion pressure from 100 to 140 mmHg by decreasing AAD by 26 ± 10% and 19 ± 4%. Superfusion with the inhibitor P2X1Ri (NF4490; 1 μM) increased AAD. In normotensive kidneys, superfusion with ANG II (1 nM) decreased AAD by 16 ± 4% and decreased further by 19 ± 5% with an increase in renal perfusion pressure. Treatment with P2X1Ri increased AAD by 30 ± 6% to values higher than those at 100 mmHg plus ANG II. In hypertensive kidneys, the inhibitor AT1Ri (SML1394; 1 μM) increased AAD by 10 ± 7%. In contrast, treatment with P2X1Ri increased AAD by 21 ± 14%; combination with P2X1Ri plus P2X7Ri (A438079; 1 μM) increased AAD further by 25 ± 8%. The results indicate that P2X1R, P2X7R, and AT1R actions converge at receptor or postreceptor signaling pathways, but P2XR exerts a dominant influence abrogating the actions of AT1Rs on AAR in ANG II-dependent hypertension.


Sign in / Sign up

Export Citation Format

Share Document