scholarly journals Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice

2015 ◽  
Vol 23 (8) ◽  
pp. 1341-1348 ◽  
Author(s):  
Ngoc B Lu-Nguyen ◽  
Susan A Jarmin ◽  
Amer F Saleh ◽  
Linda Popplewell ◽  
Michael J Gait ◽  
...  
2021 ◽  
Vol 22 (2) ◽  
pp. 850
Author(s):  
Friederike Kortüm ◽  
Sinja Kieninger ◽  
Pascale Mazzola ◽  
Susanne Kohl ◽  
Bernd Wissinger ◽  
...  

We aimed to validate the effect of non-canonical splice site variants in the RPGR gene in five patients from four families diagnosed with retinitis pigmentosa. Four variants located in intron 2 (c.154 + 3_154 + 6del), intron 3 (c.247 + 5G>A), intron 7 (c.779-5T>G), and intron 13 (c.1573-12A>G), respectively, were analyzed by means of in vitro splice assays. Splicing analysis revealed different aberrant splicing events, including exon skipping and intronic nucleotide addition, which are predicted to lead either to an in-frame deletion affecting relevant protein domains or to a frameshift of the open reading frame. Our data expand the landscape of pathogenic variants in RPGR, thereby increasing the genetic diagnostic rate in retinitis pigmentosa and allowing patients harboring the analyzed variants to be enrolled in clinical trials.


Author(s):  
Ngoc Lu-Nguyen ◽  
Arnaud Ferry ◽  
Frederick J Schnell ◽  
Gunnar J Hanson ◽  
Linda Popplewell ◽  
...  

Abstract Duchenne muscular dystrophy (DMD) is a rare genetic disease affecting 1 in 3500–5000 newborn boys. It is due to mutations in the DMD gene with a consequent lack of dystrophin protein that leads to deterioration of myofibres and their replacement with fibro-adipogenic tissue. Out-of-frame mutations in the DMD gene can be modified by using antisense oligonucleotides (AONs) to promote skipping of specific exons such that the reading frame is restored and the resulting protein produced, though truncated, is functional. We have shown that AONs can also be used to knock down myostatin, a negative regulator of muscle growth and differentiation, through disruption of the transcript reading frame, and thereby enhance muscle strength. In young mdx mice, combined dystrophin and myostatin exon skipping therapy greatly improved DMD pathology, compared to the single dystrophin skipping approach. Here we show that in aged (>15-month-old) mdx mice, when the pathology is significantly more severe and more similar to the one observed in DMD patients, the effect of the combined therapy is slightly attenuated but still beneficial in improving the disease phenotype. These results confirm the beneficial outcome of the combination approach and support its translation into DMD clinical trials.


2021 ◽  
Vol 14 (11) ◽  
pp. 1113
Author(s):  
Michaella Georgiadou ◽  
Melina Christou ◽  
Kleitos Sokratous Sokratous ◽  
Jesper Wengel ◽  
Kyriaki Michailidou ◽  
...  

Duchenne muscular dystrophy (DMD) is a fatal disorder characterised by progressive muscle wasting. It is caused by mutations in the dystrophin gene, which disrupt the open reading frame leading to the loss of functional dystrophin protein in muscle fibres. Antisense oligonucleotide (AON)-mediated skipping of the mutated exon, which allows production of a truncated but partially functional dystrophin protein, has been at the forefront of DMD therapeutic research for over two decades. Nonetheless, novel nucleic acid modifications and AON designs are continuously being developed to improve the clinical benefit profile of current drugs in the DMD pipeline. We herein designed a series of 15mer and 20mer AONs, consisting of 2’O-Methyl (2’OMe)- and locked nucleic acid (LNA)-modified nucleotides in different percentage compositions, and assessed their efficiency in inducing exon 23 skipping and dystrophin restoration in locally injected muscles of mdx mice. We demonstrate that LNA/2’OMe AONs with a 30% LNA composition were significantly more potent in inducing exon skipping and dystrophin restoration in treated mdx muscles, compared to a previously tested 2’OMe AON and LNA/2’OMe chimeras with lower or higher LNA compositions. These results underscore the therapeutic potential of LNA/2’OMe AONs, paving the way for further experimentation to evaluate their benefit-toxicity profile following systemic delivery.


1991 ◽  
Vol 266 (16) ◽  
pp. 10050-10053
Author(s):  
K.E. Hill ◽  
R.S. Lloyd ◽  
J.G. Yang ◽  
R. Read ◽  
R.F. Burk

Author(s):  
Vratko Himič ◽  
Kay E. Davies

AbstractDuchenne muscular dystrophy (DMD) is an X-linked progressive muscle-wasting disorder that is caused by a lack of functional dystrophin, a cytoplasmic protein necessary for the structural integrity of muscle. As variants in the dystrophin gene lead to a disruption of the reading frame, pharmacological treatments have only limited efficacy; there is currently no effective therapy and consequently, a significant unmet clinical need for DMD. Recently, novel genetic approaches have shown real promise in treating DMD, with advancements in the efficacy and tropism of exon skipping and surrogate gene therapy. CRISPR-Cas9 has the potential to be a ‘one-hit’ curative treatment in the coming decade. The current limitations of gene editing, such as off-target effects and immunogenicity, are in fact partly constraints of the delivery method itself, and thus research focus has shifted to improving the viral vector. In order to halt the loss of ambulation, early diagnosis and treatment will be pivotal. In an era where genetic sequencing is increasingly utilised in the clinic, genetic therapies will play a progressively central role in DMD therapy. This review delineates the relative merits of cutting-edge genetic approaches, as well as the challenges that still need to be overcome before they become clinically viable.


Sign in / Sign up

Export Citation Format

Share Document