scholarly journals Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Andreas R. Gruber ◽  
Georges Martin ◽  
Philipp Müller ◽  
Alexander Schmidt ◽  
Andreas J. Gruber ◽  
...  
2021 ◽  
Author(s):  
Amy F Chen ◽  
Benjamin Parks ◽  
Arwa Kathiria ◽  
Benjamin Ober-Reynolds ◽  
Jorg Goronzy ◽  
...  

Oligonucleotide-conjugated antibodies have allowed for joint measurement of surface protein abundance and the transcriptome in single cells using high-throughput sequencing. Extending these measurements to gene regulatory proteins in the nucleus would provide a powerful means to link changes in abundance of trans-acting TFs to changes in activity of cis-acting elements and expression of target genes. Here, we introduce Nuclear protein Epitope, chromatin Accessibility, and Transcriptome sequencing (NEAT-seq), a technique to simultaneously measure nuclear protein abundance, chromatin accessibility, and the transcriptome in single cells. We apply this technique to profile CD4 memory T cells using a panel of master transcription factors (TFs) that drive distinct helper T cell subsets and regulatory T cells (Tregs) and identify examples of TFs with regulatory activity gated by three distinct mechanisms: transcription, translation, and regulation of chromatin binding. Furthermore, we identify regulatory elements and target genes associated with each TF, which we use to link a non-coding GWAS SNP within a GATA motif to both strong allele-specific chromatin accessibility in cells expressing high levels of GATA3 protein, and a putative target gene.


2016 ◽  
Vol 39 (3) ◽  
pp. 1209-1228 ◽  
Author(s):  
Shefalee K. Bhavsar ◽  
Yogesh Singh ◽  
Piyush Sharma ◽  
Vishal Khairnar ◽  
Zohreh Hosseinzadeh ◽  
...  

Background: Similar to tumor cells, activated T-lymphocytes generate ATP mainly by glycolytic degradation of glucose. Lymphocyte glucose uptake involves non-concentrative glucose carriers of the GLUT family. In contrast to GLUT isoforms, Na+-coupled glucose-carrier SGLT1 accumulates glucose against glucose gradients and is effective at low extracellular glucose concentrations. The present study explored expression and regulation of SGLT1 in activated murine splenic cytotoxic T cells (CTLs) and human Jurkat T cells. Methods: FACS analysis, immunofluorescence, confocal microscopy, chemiluminescence and Western blotting were employed to estimate SGLT1 expression, function and regulation in lymphocytes, as well as dual electrode voltage clamp in SGLT1 ± JAK3 expressing Xenopus oocytes to quantify the effect of janus kinase3 (JAK3) on SGLT1 function. Results: SGLT1 is expressed in murine CTLs and also in human Jurkat T cells. 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose uptake was significantly decreased by SGLT1-blocker phloridzin (0.2 mM) and by pharmacological inhibition of JAK3 with WHI-P131 (156 µM), WHI-P154 (11.2 µM) and JAK3 inhibitor VI (0.5 µM). Electrogenic glucose transport (Iglucose) in Xenopus oocytes expressing human SGLT1 was increased by additional expression of human wild type JAK3, active A568VJAK3 but not inactive K851AJAK3. Coexpression of JAK3 enhanced the maximal transport rate without significantly modifying affinity of the carrier. Iglucose in SGLT1+JAK3 expressing oocytes was significantly decreased by WHI-P154 (11.2 µM). JAK3 increased the SGLT1 protein abundance in the cell membrane. Inhibition of carrier insertion by brefeldin A (5 µM) in SGLT1+JAK3 expressing oocytes resulted in a decline of Iglucose, which was similar in presence and absence of JAK3. Conclusions: SGLT1 is expressed in murine cytotoxic T cells and human Jurkat T cells and significantly contributes to glucose uptake in those cells post activation. JAK3 up-regulates SGLT1 activity by increasing the carrier protein abundance in the cell membrane, an effect enforcing cellular glucose uptake into activated lymphocytes and thus contributing to the immune response.


2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Joo-Young Park ◽  
Hee Yeun Won ◽  
Devon T. DiPalma ◽  
Changwan Hong ◽  
Jung-Hyun Park

2012 ◽  
Vol 188 (11) ◽  
pp. 5467-5477 ◽  
Author(s):  
Simone Abel ◽  
Nadja Lückheide ◽  
Astrid M. Westendorf ◽  
Robert Geffers ◽  
Axel Roers ◽  
...  

Author(s):  
Joshua A. Uhlorn ◽  
Nathaniel A. Husband ◽  
Melissa J. Romero‐Aleshire ◽  
Caitlin Moffett ◽  
Merry L. Lindsey ◽  
...  

Background Menopause is associated with an increase in the prevalence and severity of hypertension in women. Although premenopausal females are protected against T cell‐dependent immune activation and development of angiotensin II (Ang II) hypertension, this protection is lost in postmenopausal females. Therefore, the current study hypothesized that specific CD4 + T cell pathways are regulated by sex hormones and Ang II to mediate progression from premenopausal protection to postmenopausal hypertension. Methods and Results Menopause was induced in C57BL/6 mice via repeated 4‐vinylcyclohexene diepoxide injections, while premenopausal females received sesame oil vehicle. A subset of premenopausal mice and all menopausal mice were infused with Ang II for 14 days (Control, Ang II, Meno/Ang II). Proteomic and phosphoproteomic profiles of CD4 + T cells isolated from spleens were examined. Ang II markedly increased CD4 + T cell protein abundance and phosphorylation associated with DNA and histone methylation in both premenopausal and postmenopausal females. Compared with premenopausal T cells, Ang II infusion in menopausal mice increased T cell phosphorylation of MP2K2, an upstream regulator of ERK, and was associated with upregulated phosphorylation at ERK targeted sites. Additionally, Ang II infusion in menopausal mice decreased T cell phosphorylation of TLN1, a key regulator of IL‐2Rα and FOXP3 expression. Conclusions These findings identify novel, distinct T cell pathways that influence T cell‐mediated inflammation during postmenopausal hypertension.


2001 ◽  
Vol 120 (5) ◽  
pp. A192-A192
Author(s):  
H TAKAISHI ◽  
T DENNING ◽  
K ITO ◽  
R MIFFLIN ◽  
P ERNST

Sign in / Sign up

Export Citation Format

Share Document