scholarly journals NEAT-seq: Simultaneous profiling of intra-nuclear proteins, chromatin accessibility, and gene expression in single cells

2021 ◽  
Author(s):  
Amy F Chen ◽  
Benjamin Parks ◽  
Arwa Kathiria ◽  
Benjamin Ober-Reynolds ◽  
Jorg Goronzy ◽  
...  

Oligonucleotide-conjugated antibodies have allowed for joint measurement of surface protein abundance and the transcriptome in single cells using high-throughput sequencing. Extending these measurements to gene regulatory proteins in the nucleus would provide a powerful means to link changes in abundance of trans-acting TFs to changes in activity of cis-acting elements and expression of target genes. Here, we introduce Nuclear protein Epitope, chromatin Accessibility, and Transcriptome sequencing (NEAT-seq), a technique to simultaneously measure nuclear protein abundance, chromatin accessibility, and the transcriptome in single cells. We apply this technique to profile CD4 memory T cells using a panel of master transcription factors (TFs) that drive distinct helper T cell subsets and regulatory T cells (Tregs) and identify examples of TFs with regulatory activity gated by three distinct mechanisms: transcription, translation, and regulation of chromatin binding. Furthermore, we identify regulatory elements and target genes associated with each TF, which we use to link a non-coding GWAS SNP within a GATA motif to both strong allele-specific chromatin accessibility in cells expressing high levels of GATA3 protein, and a putative target gene.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wanwen Zeng ◽  
Xi Chen ◽  
Zhana Duren ◽  
Yong Wang ◽  
Rui Jiang ◽  
...  

Abstract Characterizing and interpreting heterogeneous mixtures at the cellular level is a critical problem in genomics. Single-cell assays offer an opportunity to resolve cellular level heterogeneity, e.g., scRNA-seq enables single-cell expression profiling, and scATAC-seq identifies active regulatory elements. Furthermore, while scHi-C can measure the chromatin contacts (i.e., loops) between active regulatory elements to target genes in single cells, bulk HiChIP can measure such contacts in a higher resolution. In this work, we introduce DC3 (De-Convolution and Coupled-Clustering) as a method for the joint analysis of various bulk and single-cell data such as HiChIP, RNA-seq and ATAC-seq from the same heterogeneous cell population. DC3 can simultaneously identify distinct subpopulations, assign single cells to the subpopulations (i.e., clustering) and de-convolve the bulk data into subpopulation-specific data. The subpopulation-specific profiles of gene expression, chromatin accessibility and enhancer-promoter contact obtained by DC3 provide a comprehensive characterization of the gene regulatory system in each subpopulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shun Li ◽  
Bin Wu ◽  
Yun Ling ◽  
Mingquan Guo ◽  
Boyin Qin ◽  
...  

T cells play a critical role in coronavirus diseases. How they do so in COVID-19 may be revealed by analyzing the epigenetic chromatin accessibility of cis- and trans-regulatory elements and creating transcriptomic immune profiles. We performed single-cell assay for transposase-accessible chromatin (scATAC) and single-cell RNA (scRNA) sequencing (seq) on the peripheral blood mononuclear cells (PBMCs) of severely ill/critical patients (SCPs) infected with COVID-19, moderate patients (MPs), and healthy volunteer controls (HCs). About 76,570 and 107,862 single cells were used, respectively, for analyzing the characteristics of chromatin accessibility and transcriptomic immune profiles by the application of scATAC-seq (nine cases) and scRNA-seq (15 cases). The scATAC-seq detected 28,535 different peaks in the three groups; among these peaks, 41.6 and 10.7% were located in the promoter and enhancer regions, respectively. Compared to HCs, among the peak-located genes in the total T cells and its subsets, CD4+ T and CD8+ T cells, from SCPs and MPs were enriched with inflammatory pathways, such as mitogen-activated protein kinase (MAPK) signaling pathway and tumor necrosis factor (TNF) signaling pathway. The motifs of TBX21 were less accessible in the CD4+ T cells of SCPs compared with those in MPs. Furthermore, the scRNA-seq showed that the proportion of T cells, especially the CD4+ T cells, was decreased in SCPs and MPs compared with those in HCs. Transcriptomic results revealed that histone-related genes, and inflammatory genes, such as NFKBIA, S100A9, and PIK3R1, were highly expressed in the total T cells, CD4+ T and CD8+ T cells, both in the cases of SCPs and MPs. In the CD4+ T cells, decreased T helper-1 (Th1) cells were observed in SCPs and MPs. In the CD8+T cells, activation markers, such as CD69 and HLA class II genes (HLA-DRA, HLA-DRB1, and HLA-DRB5), were significantly upregulated in SCPs. An integrated analysis of the data from scATAC-seq and scRNA-seq showed some consistency between the approaches. Cumulatively, we have generated a landscape of chromatin epigenetic status and transcriptomic immune profiles of T cells in patients with COVID-19. This has provided a deeper dissection of the characteristics of the T cells involved at a higher resolution than from previously obtained data merely by the scRNA-seq analysis. Our data led us to suggest that the T-cell inflammatory states accompanied with defective functions in the CD4+ T cells of SCPs may be the key factors for determining the pathogenesis of and recovery from COVID-19.


2021 ◽  
Author(s):  
Vasiliki Theodorou ◽  
Aikaterini Stefanaki ◽  
Minas Drakos ◽  
Dafne Triantafyllou ◽  
Christos Delidakis

Background: ASC/ASCL proneural transcription factors are oncogenic and exhibit impressive reprogramming and pioneer activities. In both Drosophila and mammals, these factors are central in the early specification of the neural fate, where they act in opposition to Notch signalling. However, the role of ASC on the chromatin during CNS neural stem cells birth remains elusive. Results: We investigated the chromatin changes accompanying neural commitment using an integrative genetics and genomics methodology. We found that ASC factors bind equally strongly to two distinct classes of cis-regulatory elements: open regions remodeled earlier during maternal to zygotic transition by Zelda and Zelda-independent, less accessible regions. Both classes cis-elements exhibit enhanced chromatin accessibility during neural specification and correlate with transcriptional regulation of genes involved in many biological processes necessary for neuroblast function. We identified an ASC-Notch regulated TF network that most likely act as the prime regulators of neuroblast function. Using a cohort of ASC target genes, we report that ASC null neuroblasts are defectively specified, remaining initially stalled, lacking expression of many proneural targets and unable to divide. When they eventually start proliferating, they produce compromised progeny. Generation of lacZ reporter lines driven by proneural-bound elements display enhancer activity within neuroblasts and proneural dependency. Therefore, the partial neuroblast identity seen in the absence of ASC genes is driven by other, proneural-independent, cis-elements. Neuroblast impairment and the late differentiation defects of ASC mutants are corrected by ectodermal induction of individual ASC genes but not by individual members of the TF network downstream of ASC. However, in wild type embryos induction of individual members of this network induces CNS hyperplasia, suggesting that they synergize with the activating function of ASC to establish the chromatin dynamics that promote neural specification. Conclusion: ASC factors bind a large number of enhancers to orchestrate the timely activation of the neural chromatin program during neuroectodermal to neuroblast transition. This early chromatin remodeling is crucial for both neuroblast homeostasis as well as future progeny fidelity.


1994 ◽  
Vol 14 (2) ◽  
pp. 1084-1094
Author(s):  
Z Hanna ◽  
C Simard ◽  
A Laperrière ◽  
P Jolicoeur

The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1793
Author(s):  
Aleša Kristan ◽  
Nataša Debeljak ◽  
Tanja Kunej

Endothelial PAS domain-containing protein 1 (EPAS1), also HIF2α, is an alpha subunit of hypoxia-inducible transcription factor (HIF), which mediates cellular and systemic response to hypoxia. EPAS1 has an important role in the transcription of many hypoxia-responsive genes, however, it has been less researched than HIF1α. The aim of this study was to integrate an increasing number of data on EPAS1 into a map of diverse OMICs elements. Publications, databases, and bioinformatics tools were examined, including Ensembl, MethPrimer, STRING, miRTarBase, COSMIC, and LOVD. The EPAS1 expression, stability, and activity are tightly regulated on several OMICs levels to maintain complex oxygen homeostasis. In the integrative EPAS1 map we included: 31 promoter-binding proteins, 13 interacting miRNAs and one lncRNA, and 16 post-translational modifications regulating EPAS1 protein abundance. EPAS1 has been associated with various cancer types and other diseases. The development of neuroendocrine tumors and erythrocytosis was shown to be associated with 11 somatic and 20 germline variants. The integrative map also includes 12 EPAS1 target genes and 27 interacting proteins. The study introduced the first integrative map of diverse genomics, transcriptomics, proteomics, regulomics, and interactomics data associated with EPAS1, to enable a better understanding of EPAS1 activity and regulation and support future research.


2009 ◽  
Vol 206 (11) ◽  
pp. 2329-2337 ◽  
Author(s):  
Ludovica Bruno ◽  
Luca Mazzarella ◽  
Maarten Hoogenkamp ◽  
Arnulf Hertweck ◽  
Bradley S. Cobb ◽  
...  

Runx proteins are essential for hematopoiesis and play an important role in T cell development by regulating key target genes, such as CD4 and CD8 as well as lymphokine genes, during the specialization of naive CD4 T cells into distinct T helper subsets. In regulatory T (T reg) cells, the signature transcription factor Foxp3 interacts with and modulates the function of several other DNA binding proteins, including Runx family members, at the protein level. We show that Runx proteins also regulate the initiation and the maintenance of Foxp3 gene expression in CD4 T cells. Full-length Runx promoted the de novo expression of Foxp3 during inducible T reg cell differentiation, whereas the isolated dominant-negative Runt DNA binding domain antagonized de novo Foxp3 expression. Foxp3 expression in natural T reg cells remained dependent on Runx proteins and correlated with the binding of Runx/core-binding factor β to regulatory elements within the Foxp3 locus. Our data show that Runx and Foxp3 are components of a feed-forward loop in which Runx proteins contribute to the expression of Foxp3 and cooperate with Foxp3 proteins to regulate the expression of downstream target genes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Justin B. Moroney ◽  
Anusha Vasudev ◽  
Alexander Pertsemlidis ◽  
Hong Zan ◽  
Paolo Casali

Abstract Memory B cells (MBCs) are long-lived and produce high-affinity, generally, class-switched antibodies. Here, we use a multiparameter approach involving CD27 to segregate naïve B cells (NBC), IgD+ unswitched (unsw)MBCs and IgG+ or IgA+ class-switched (sw)MBCs from humans of different age, sex and race. Conserved antibody variable gene expression indicates that MBCs emerge through unbiased selection from NBCs. Integrative analyses of mRNAs, miRNAs, lncRNAs, chromatin accessibility and cis-regulatory elements uncover a core mRNA-ncRNA transcriptional signature shared by IgG+ and IgA+ swMBCs and distinct from NBCs, while unswMBCs display a transitional transcriptome. Some swMBC transcriptional signature loci are accessible but not expressed in NBCs. Profiling miRNAs reveals downregulated MIR181, and concomitantly upregulated MIR181 target genes such as RASSF6, TOX, TRERF1, TRPV3 and RORα, in swMBCs. Finally, lncRNAs differentially expressed in swMBCs cluster proximal to the IgH chain locus on chromosome 14. Our findings thus provide new insights into MBC transcriptional programs and epigenetic regulation, opening new investigative avenues on these critical cell elements in human health and disease.


2017 ◽  
Vol 114 (25) ◽  
pp. E4914-E4923 ◽  
Author(s):  
Zhana Duren ◽  
Xi Chen ◽  
Rui Jiang ◽  
Yong Wang ◽  
Wing Hung Wong

The rapid increase of genome-wide datasets on gene expression, chromatin states, and transcription factor (TF) binding locations offers an exciting opportunity to interpret the information encoded in genomes and epigenomes. This task can be challenging as it requires joint modeling of context-specific activation of cis-regulatory elements (REs) and the effects on transcription of associated regulatory factors. To meet this challenge, we propose a statistical approach based on paired expression and chromatin accessibility (PECA) data across diverse cellular contexts. In our approach, we model (i) the localization to REs of chromatin regulators (CRs) based on their interaction with sequence-specific TFs, (ii) the activation of REs due to CRs that are localized to them, and (iii) the effect of TFs bound to activated REs on the transcription of target genes (TGs). The transcriptional regulatory network inferred by PECA provides a detailed view of how trans- and cis-regulatory elements work together to affect gene expression in a context-specific manner. We illustrate the feasibility of this approach by analyzing paired expression and accessibility data from the mouse Encyclopedia of DNA Elements (ENCODE) and explore various applications of the resulting model.


1993 ◽  
Vol 178 (5) ◽  
pp. 1483-1496 ◽  
Author(s):  
L Penix ◽  
W M Weaver ◽  
Y Pang ◽  
H A Young ◽  
C B Wilson

Like interleukin 2 (IL-2), interferon gamma (IFN-gamma) is an early response gene in T cells and both are prototypical T helper cell type 1 (Th-1) lymphokines. Yet IL-2 and IFN-gamma production are independently regulated, as demonstrated by their differential expression in certain T cell subsets, suggesting that the regulatory elements in these two genes must differ. To explore this possibility, the 5' flank of the human IFN-gamma gene was analyzed. Expression of IFN-gamma promoter-driven beta-galactosidase reporter constructs containing 538 bp of 5' flank was similar to that by constructs driven by the IL-2 promoter in activated Jurkat T cells; expression nearly as great was observed with the construct containing only 108 bp of IFN-gamma 5' flank. These IFN-gamma promoter constructs faithfully mirrored expression of the endogenous gene, in that expression required activation both with ionomycin and PMA, was inhibited by cyclosporin A, and was not observed in U937 or THP-1 cells. The region between -108 and -40 bp in the IFN-gamma promoter was required for promoter function and contained two elements that are conserved across species. Deletion of 10 bp within either element reduced promoter function by 70%, whereas deletions in nonconserved portions of this region had little effect on promoter function. The distal conserved element (-96 to -80 bp) contained a consensus GATA motif and a potential regulatory motif found in the promoter regions of the GM-CSF and macrophage inflammatory protein (MIP) genes. Factors binding to this element, including GATA-3, were found in Jurkat nuclear extracts by electromobility shift assays and two of the three complexes observed were altered in response to activation. One or both of these motifs are present in the 5' flank of multiple, other lymphokine genes, including IL-3, IL-4, IL-5, and GM-CSF, but neither is present in the promoter of the IL-2 gene. The proximal conserved element (-73 to -48 bp) shares homology with the NFIL-2A element in the IL-2 promoter; these elements compete for binding of factors in Jurkat nuclear extracts, although the NFIL-2A element but not the IFN-gamma element binds Oct-1. Factors binding to this element in the IFN-gamma gene were present in extracts from resting and activated Jurkat T cells. However, by in vivo footprinting of intact cells, this element was protected from methylation only with activation.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2012 ◽  
Vol 119 (9) ◽  
pp. 2033-2043 ◽  
Author(s):  
Shahram Kordasti ◽  
Judith Marsh ◽  
Sufyan Al-Khan ◽  
Jie Jiang ◽  
Alexander Smith ◽  
...  

Abstract The role of CD4+ T cells in the pathogenesis of aplastic anemia (AA) is not well characterized. We investigate CD4+ T-cell subsets in AA. Sixty-three patients with acquired AA were studied. Th1 and Th2 cells were significantly higher in AA patients than in healthy donors (HDs; P = .03 and P = .006). Tregs were significantly lower in patients with severe AA than in HDs (P < .001) and patients with non-severe AA (P = .01). Th17 cells were increased in severe AA (P = .02) but normal in non-severe AA. Activated and resting Tregs were reduced in AA (P = .004; P = .01), whereas cytokine-secreting non-Tregs were increased (P = .003). Tregs from AA patients were unable to suppress normal effector T cells. In contrast, AA effector T cells were suppressible by Tregs from HDs. Th1 clonality in AA, investigated by high-throughput sequencing, was greater than in HDs (P = .03). Our results confirm that Th1 and Th2 cells are expanded and Tregs are functionally abnormal in AA. The clonally restricted expansion of Th1 cells is most likely to be antigen-driven, and induces an inflammatory environment, that exacerbate the functional impairment of Tregs, which are reduced in number.


Sign in / Sign up

Export Citation Format

Share Document