scholarly journals Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Didier Swingedouw ◽  
Pablo Ortega ◽  
Juliette Mignot ◽  
Eric Guilyardi ◽  
Valérie Masson-Delmotte ◽  
...  
2014 ◽  
Vol 44 (1) ◽  
pp. 179-201 ◽  
Author(s):  
Nicolas Barrier ◽  
Christophe Cassou ◽  
Julie Deshayes ◽  
Anne-Marie Treguier

Abstract A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO−), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO− induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO− conditions. These responses are driven by changes in deep water formation in the Labrador Sea.


2015 ◽  
Vol 45 (11-12) ◽  
pp. 3623-3633 ◽  
Author(s):  
C.-F. Schleussner ◽  
D. V. Divine ◽  
J. F. Donges ◽  
A. Miettinen ◽  
R. V. Donner

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Léon Chafik ◽  
Jan Even Øie Nilsen ◽  
Sönke Dangendorf ◽  
Gilles Reverdin ◽  
Thomas Frederikse

2000 ◽  
Vol 54 (2) ◽  
pp. 174-181 ◽  
Author(s):  
David W. Leverington ◽  
Jason D. Mann ◽  
James T. Teller

The volume and surface area of glacial Lake Agassiz varied considerably during its 4000-year history. Computer models for seven stages of Lake Agassiz were used to quantify these variations over the lake's early history, between about 11,000 and 9300 14C yr B.P. (ca. 13,000 to 10,300 cal yr B.P.). Just after formation of the Herman strandlines (ca. 11,000 14C yr B.P.), the volume of Lake Agassiz appears to have decreased by >85% as a consequence of the abrupt rerouting of overflow to its eastern outlet from its southward routing into the Mississippi River basin. This drainage released about 9500 km3 of water into the North Atlantic Ocean via the Great Lakes and Gulf of St. Lawrence. Following closure of this eastern routing of overflow, the lake reached its maximum size at about 9400 14C yr B.P. with an area of >260,000 km2 and a volume of >22,700 km3. A second major reduction in volume occurred shortly after that, when its volume decreased >10% following the opening of the Kaiashk outlet to the east into the Great Lakes, and 2500–7000 km3 of water was released into the North Atlantic Ocean. These discharges may have affected ocean circulation and North Atlantic Deep Water production.


2015 ◽  
Vol 45 (1-2) ◽  
pp. 139-150 ◽  
Author(s):  
Xun Gong ◽  
Xiangdong Zhang ◽  
Gerrit Lohmann ◽  
Wei Wei ◽  
Xu Zhang ◽  
...  

2006 ◽  
Vol 111 (C6) ◽  
Author(s):  
Jun Zhao ◽  
Jinyu Sheng ◽  
Richard J. Greatbatch ◽  
Kumiko Azetsu-Scott ◽  
E. Peter Jones

Geology ◽  
2017 ◽  
Vol 45 (3) ◽  
pp. 195-198 ◽  
Author(s):  
Avriel D. Schweinsberg ◽  
Jason P. Briner ◽  
Gifford H. Miller ◽  
Ole Bennike ◽  
Elizabeth K. Thomas

Sign in / Sign up

Export Citation Format

Share Document