scholarly journals A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1

2004 ◽  
Vol 36 (2) ◽  
pp. 172-177 ◽  
Author(s):  
Kogo Takamiya ◽  
Vassiliki Kostourou ◽  
Susanne Adams ◽  
Shalini Jadeja ◽  
Georges Chalepakis ◽  
...  
2004 ◽  
Vol 26 (4) ◽  
pp. 518-529 ◽  
Author(s):  
Koji Ohno ◽  
Michael Koroll ◽  
Oussama El Far ◽  
Petra Scholze ◽  
Jesus Gomeza ◽  
...  

2017 ◽  
Vol 312 (6) ◽  
pp. L912-L925 ◽  
Author(s):  
Carol A. Bertrand ◽  
Shalini Mitra ◽  
Sanjay K. Mishra ◽  
Xiaohui Wang ◽  
Yu Zhao ◽  
...  

Several members of the SLC26A family of anion transporters associate with CFTR, forming complexes in which CFTR and SLC26A functions are reciprocally regulated. These associations are thought to be facilitated by PDZ scaffolding interactions. CFTR has been shown to be positively regulated by NHERF-1, and negatively regulated by CAL in airway epithelia. However, it is unclear which PDZ-domain protein(s) interact with SLC26A9, a SLC26A family member found in airway epithelia. We have previously shown that primary, human bronchial epithelia (HBE) from non-CF donors exhibit constitutive anion secretion attributable to SLC26A9. However, constitutive anion secretion is absent in HBE from CF donors. We examined whether changes in SLC26A9 constitutive activity could be attributed to a loss of CFTR trafficking, and what role PDZ interactions played. HEK293 coexpressing SLC26A9 with the trafficking mutant F508del CFTR exhibited a significant reduction in constitutive current compared with cells coexpressing SLC26A9 and wt CFTR. We found that SLC26A9 exhibits complex glycosylation when coexpressed with F508del CFTR, but its expression at the plasma membrane is decreased. SLC26A9 interacted with both NHERF-1 and CAL, and its interaction with both significantly increased with coexpression of wt CFTR. However, coexpression with F508del CFTR only increased SLC26A9’s interaction with CAL. Mutation of SLC26A9’s PDZ motif decreased this association with CAL, and restored its constitutive activity. Correcting aberrant F508del CFTR trafficking in CF HBE with corrector VX-809 also restored SLC26A9 activity. We conclude that when SLC26A9 is coexpressed with F508del CFTR, its trafficking defect leads to a PDZ motif-sensitive intracellular retention of SLC26A9.


2015 ◽  
Vol 25 (5) ◽  
pp. 594-600 ◽  
Author(s):  
Won Hee Jang ◽  
Young Joo Jeong ◽  
Sun Hee Choi ◽  
Won Hee Lee ◽  
Mooseong Kim ◽  
...  
Keyword(s):  

2015 ◽  
Vol 35 (7) ◽  
pp. 3073-3084 ◽  
Author(s):  
J. C. de Nooij ◽  
C. M. Simon ◽  
A. Simon ◽  
S. Doobar ◽  
K. P. Steel ◽  
...  
Keyword(s):  

2000 ◽  
Vol 74 (20) ◽  
pp. 9680-9693 ◽  
Author(s):  
Siu Sylvia Lee ◽  
Britt Glaunsinger ◽  
Fiamma Mantovani ◽  
Lawrence Banks ◽  
Ronald T. Javier

ABSTRACT A general theme that has emerged from studies of DNA tumor viruses is that otherwise unrelated oncoproteins encoded by these viruses often target the same important cellular factors. Major oncogenic determinants for human adenovirus type 9 (Ad9) and high-risk human papillomaviruses (HPV) are the E4-ORF1 and E6 oncoproteins, respectively, and although otherwise unrelated, both of these viral proteins possess a functional PDZ domain-binding motif that is essential for their transforming activity and for binding to the PDZ domain-containing and putative tumor suppressor protein DLG. We report here that the PDZ domain-binding motifs of Ad9 E4-ORF1 and high-risk HPV-18 E6 also mediate binding to the widely expressed cellular factor MUPP1, a large multi-PDZ domain protein predicted to function as an adapter in signal transduction. With regard to the consequences of these interactions in cells, we showed that Ad9 E4-ORF1 aberrantly sequesters MUPP1 within the cytoplasm of cells whereas HPV-18 E6 targets this cellular protein for degradation. These effects were specific because mutant viral proteins unable to bind MUPP1 lack these activities. From these results, we propose that the multi-PDZ domain protein MUPP1 is involved in negatively regulating cellular proliferation and that the transforming activities of two different viral oncoproteins depend, in part, on their ability to inactivate this cellular factor.


2008 ◽  
Vol 19 (3) ◽  
pp. 785-796 ◽  
Author(s):  
Claire Lecroisey ◽  
Edwige Martin ◽  
Marie-Christine Mariol ◽  
Laure Granger ◽  
Yannick Schwab ◽  
...  

In Caenorhabditis elegans, mutations of the dystrophin homologue, dys-1, produce a peculiar behavioral phenotype (hyperactivity and a tendency to hypercontract). In a sensitized genetic background, dys-1 mutations also lead to muscle necrosis. The dyc-1 gene was previously identified in a genetic screen because its mutation leads to the same phenotype as dys-1, suggesting that the two genes are functionally linked. Here, we report the detailed characterization of the dyc-1 gene. dyc-1 encodes two isoforms, which are expressed in neurons and muscles. Isoform-specific RNAi experiments show that the absence of the muscle isoform, and not that of the neuronal isoform, is responsible for the dyc-1 mutant phenotype. In the sarcomere, the DYC-1 protein is localized at the edges of the dense body, the nematode muscle adhesion structure where actin filaments are anchored and linked to the sarcolemma. In yeast two-hybrid assays, DYC-1 interacts with ZYX-1, the homologue of the vertebrate focal adhesion LIM domain protein zyxin. ZYX-1 localizes at dense bodies and M-lines as well as in the nucleus of C. elegans striated muscles. The DYC-1 protein possesses a highly conserved 19 amino acid sequence, which is involved in the interaction with ZYX-1 and which is sufficient for addressing DYC-1 to the dense body. Altogether our findings indicate that DYC-1 may be involved in dense body function and stability. This, taken together with the functional link between the C. elegans DYC-1 and DYS-1 proteins, furthermore suggests a requirement of dystrophin function at this structure. As the dense body shares functional similarity with both the vertebrate Z-disk and the costamere, we therefore postulate that disruption of muscle cell adhesion structures might be the primary event of muscle degeneration occurring in the absence of dystrophin, in C. elegans as well as vertebrates.


Sign in / Sign up

Export Citation Format

Share Document