Small fraction of marine cloud condensation nuclei made up of sea spray aerosol

2017 ◽  
Vol 10 (9) ◽  
pp. 674-679 ◽  
Author(s):  
P. K. Quinn ◽  
D. J. Coffman ◽  
J. E. Johnson ◽  
L. M. Upchurch ◽  
T. S. Bates
2020 ◽  
Author(s):  
Patricia Quinn ◽  
Tim Bates ◽  
Eric Saltzman ◽  
Tom Bell ◽  
Mike Behrenfeld

<p>The emission of sea spray aerosol (SSA) and dimethylsulfide (DMS) from the ocean results in marine boundary layer aerosol particles that can impact Earth’s radiation balance by directly scattering solar radiation and by acting as cloud condensation nuclei (CCN), thereby altering cloud properties. The surface ocean is projected to warm by 1.3 to 2.8°C globally over the 21<sup>st</sup> century. Impacts of this warming on plankton blooms, ocean ecosystems, and ocean-to-atmosphere fluxes of aerosols and their precursor gases are highly uncertain. A fundamental understanding of linkages between surface ocean ecosystems and ocean-derived aerosols is required to address this uncertainty. One approach for improved understandings of these linkages is simultaneous measurements of relevant surface ocean and aerosol properties in an ocean region with seasonally varying plankton blooms and a minimally polluted overlying atmosphere. The western North Atlantic hosts the largest annual phytoplankton bloom in the global ocean with a large spatial and seasonal variability in plankton biomass and composition. Periods of low aerosol number concentrations associated with unpolluted air masses allow for the detection of linkages between ocean ecosystems and ocean-derived aerosol.</p><p> </p><p>Five experiments were conducted in the western North Atlantic between 2014 and 2018 with the objective of finding links between the bloom and marine aerosols. These experiments include the second Western Atlantic Climate Study (WACS-2) and four North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) cruises. This series of cruises was the first time the western North Atlantic bloom was systematically sampled during every season with extensive ocean and atmosphere measurements able to assess how changes in the state of the bloom might impact ocean-derived aerosol properties. Measurements of unheated and heated number size distributions, cloud condensation nuclei (CCN) concentrations, and aerosol composition were used to identify primary and secondary aerosol components that could be related to the state of the bloom. Only periods of clean marine air, as defined by radon, particle number concentration, aerosol light absorption coefficient, and back trajectories, were included in the analysis.</p><p> </p><p>CCN concentrations at 0.1% supersaturation were best correlated (r<sup>2</sup> = 0.73) with accumulation mode nss SO<sub>4</sub><sup>=</sup>. Sea spray aerosol (SSA) was only correlated with CCN during November when bloom accumulation had not yet occurred and dimethylsulfide (DMS) concentrations were at a minimum. The fraction of CCN attributable to SSA was less than 20% during March, May/June, and September, indicating the limited contribution of SSA to the CCN population of the western North Atlantic atmosphere. The strongest link between the plankton bloom and aerosol and cloud properties appears to be due to biogenic non-seasalt SO<sub>4</sub><sup>=</sup>.</p><p> </p>


2020 ◽  
Author(s):  
Laura Revell ◽  
Stefanie Kremser ◽  
Sean Hartery ◽  
Mike Harvey ◽  
Jane Mulcahy ◽  
...  

<p>With low concentrations of tropospheric aerosol, the Southern Ocean offers a "natural laboratory" for studies of aerosol–cloud interactions. Aerosols over the Southern Ocean are produced from biogenic activity in the ocean, which generates sulfate aerosol via dimethylsulfide (DMS) oxidation, and from strong winds and waves that lead to bubble bursting and sea spray emission. Here, we evaluate the representation of Southern Ocean aerosols in the Hadley Centre Global Environmental Model version 3, Global Atmosphere 7.1 (HadGEM3-GA7.1) chemistry–climate model. Compared with aerosol optical depth (AOD) observations from two satellite instruments (the Moderate Resolution Imaging Spectroradiometer, MODIS-Aqua c6.1, and the Multi-angle Imaging Spectroradiometer, MISR), the model simulates too-high AOD during winter and too-low AOD during summer. By switching off DMS emission in the model, we show that sea spray aerosol is the dominant contributor to AOD during winter. In turn, the simulated sea spray aerosol flux depends on near-surface wind speed. By examining MODIS AOD as a function of wind speed from the ERA-Interim reanalysis and comparing it with the model, we show that the sea spray aerosol source function in HadGEM3-GA7.1 overestimates the wind speed dependency. We test a recently developed sea spray aerosol source function derived from measurements made on a Southern Ocean research voyage in 2018. In this source function, the wind speed dependency of the sea spray aerosol flux is less than in the formulation currently implemented in HadGEM3-GA7.1. The new source function leads to good agreement between simulated and observed wintertime AODs over the Southern Ocean; however, it reveals partially compensating errors in DMS-derived AOD. While previous work has tested assumptions regarding the seawater climatology or sea–air flux of DMS, we test the sensitivity of simulated AOD, cloud condensation nuclei and cloud droplet number concentration to three atmospheric sulfate chemistry schemes. The first scheme adds DMS oxidation by halogens and the other two test a recently developed sulfate chemistry scheme for the marine troposphere; one tests gas-phase chemistry only, while the second adds extra aqueous-phase sulfate reactions. We show how simulated sulfur dioxide and sulfuric acid profiles over the Southern Ocean change as a result and how the number concentration and particle size of the soluble Aitken, accumulation and coarse aerosol modes are affected. The new DMS chemistry scheme leads to a 20% increase in the number concentration of cloud condensation nuclei and cloud droplets, which improves agreement with observations. Our results highlight the importance of atmospheric chemistry for simulating aerosols and clouds accurately over the Southern Ocean.</p>


2019 ◽  
Author(s):  
Laura E. Revell ◽  
Stefanie Kremser ◽  
Sean Hartery ◽  
Mike Harvey ◽  
Jane P. Mulcahy ◽  
...  

Abstract. With low concentrations of tropospheric aerosol, the Southern Ocean offers a natural laboratory for studies of aerosol-cloud interactions. Aerosols over the Southern Ocean are produced from biogenic activity in the ocean, which generates sulfate aerosol via dimethylsulfide (DMS) oxidation, and from strong winds and waves that lead to bubble bursting and sea-spray emission. Here we evaluate the representation of Southern Ocean aerosols in the HadGEM3-GA7.1 chemistry-climate model. Compared with aerosol optical depth (AOD) observations from two satellite instruments (the Moderate Resolution Imaging Spectroradiometer, MODIS-Aqua c6.1 and the Multi-angle Imaging Spectroradiometer, MISR), the model simulates too-high AOD during winter and too-low AOD during summer. By switching off DMS emission in the model, we show that sea spray aerosol is the dominant contributor to AOD during winter. In turn, the simulated sea spray aerosol flux depends on near-surface wind speed. By examining MODIS AOD as a function of wind speed from the ERA-Interim reanalysis and comparing it with the model, we show that the sea spray aerosol source function in HadGEM3-GA7.1 overestimates the wind speed dependency. We test a recently-developed sea spray aerosol source function derived from measurements made on a Southern Ocean research voyage in 2018. In this source function the wind speed dependency of the sea spray aerosol flux is less than in the formulation currently implemented in HadGEM3-GA7.1. The new source function leads to good agreement between simulated and observed wintertime AOD over the Southern Ocean, however reveals partially compensating errors in DMS-derived AOD. While previous work has tested assumptions regarding the seawater climatology or sea-air flux of DMS, we test the sensitivity of simulated AOD, cloud condensation nuclei and cloud droplet number concentration to three atmospheric sulfate chemistry schemes. The first scheme adds DMS oxidation by halogens and the other two test a recently-developed sulfate chemistry scheme for the marine troposphere; one tests gas-phase chemistry only while the second adds extra aqueous-phase sulfate reactions. We show how simulated sulfur dioxide and sulfuric acid profiles over the Southern Ocean change as a result, and how the number concentration and particle size of the soluble Aitken, accumulation and coarse aerosol modes are affected. The new DMS chemistry scheme leads to a 20 % increase in the number concentration of cloud condensation nuclei and cloud droplets, which improves agreement with observations. Our results highlight the importance of atmospheric chemistry for simulating aerosols and clouds accurately over the Southern Ocean.


2011 ◽  
Vol 45 (39) ◽  
pp. 7462-7469 ◽  
Author(s):  
Meagan J.K. Moore ◽  
Hiroshi Furutani ◽  
Gregory C. Roberts ◽  
Ryan C. Moffet ◽  
Mary K. Gilles ◽  
...  

2019 ◽  
Vol 19 (24) ◽  
pp. 15447-15466 ◽  
Author(s):  
Laura E. Revell ◽  
Stefanie Kremser ◽  
Sean Hartery ◽  
Mike Harvey ◽  
Jane P. Mulcahy ◽  
...  

Abstract. With low concentrations of tropospheric aerosol, the Southern Ocean offers a “natural laboratory” for studies of aerosol–cloud interactions. Aerosols over the Southern Ocean are produced from biogenic activity in the ocean, which generates sulfate aerosol via dimethylsulfide (DMS) oxidation, and from strong winds and waves that lead to bubble bursting and sea spray emission. Here, we evaluate the representation of Southern Ocean aerosols in the Hadley Centre Global Environmental Model version 3, Global Atmosphere 7.1 (HadGEM3-GA7.1) chemistry–climate model. Compared with aerosol optical depth (AOD) observations from two satellite instruments (the Moderate Resolution Imaging Spectroradiometer, MODIS-Aqua c6.1, and the Multi-angle Imaging Spectroradiometer, MISR), the model simulates too-high AOD during winter and too-low AOD during summer. By switching off DMS emission in the model, we show that sea spray aerosol is the dominant contributor to AOD during winter. In turn, the simulated sea spray aerosol flux depends on near-surface wind speed. By examining MODIS AOD as a function of wind speed from the ERA-Interim reanalysis and comparing it with the model, we show that the sea spray aerosol source function in HadGEM3-GA7.1 overestimates the wind speed dependency. We test a recently developed sea spray aerosol source function derived from measurements made on a Southern Ocean research voyage in 2018. In this source function, the wind speed dependency of the sea spray aerosol flux is less than in the formulation currently implemented in HadGEM3-GA7.1. The new source function leads to good agreement between simulated and observed wintertime AODs over the Southern Ocean; however, it reveals partially compensating errors in DMS-derived AOD. While previous work has tested assumptions regarding the seawater climatology or sea–air flux of DMS, we test the sensitivity of simulated AOD, cloud condensation nuclei and cloud droplet number concentration to three atmospheric sulfate chemistry schemes. The first scheme adds DMS oxidation by halogens and the other two test a recently developed sulfate chemistry scheme for the marine troposphere; one tests gas-phase chemistry only, while the second adds extra aqueous-phase sulfate reactions. We show how simulated sulfur dioxide and sulfuric acid profiles over the Southern Ocean change as a result and how the number concentration and particle size of the soluble Aitken, accumulation and coarse aerosol modes are affected. The new DMS chemistry scheme leads to a 20 % increase in the number concentration of cloud condensation nuclei and cloud droplets, which improves agreement with observations. Our results highlight the importance of atmospheric chemistry for simulating aerosols and clouds accurately over the Southern Ocean.


2012 ◽  
Vol 12 (1) ◽  
pp. 89-101 ◽  
Author(s):  
D. M. Westervelt ◽  
R. H. Moore ◽  
A. Nenes ◽  
P. J. Adams

Abstract. This work estimates the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of sea salt. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr−1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe, assuming direct replacement of sea salt aerosol with organic aerosol. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only ~15% in a biologically active region of the Southern Ocean. To test the sensitivity to uncertainty in the sea spray emissions process, we relax the assumption that sea spray aerosol number and mass remain fixed and instead can add to sea spray emissions rather than replace existing sea salt. In these simulations, we find that marine organic aerosol can increase CCN by up to 50% in the Southern Ocean and 3.7% globally during the austral summer. This vast difference in CCN impact highlights the need for further observational exploration of the sea spray aerosol emission process as well as evaluation and development of model parameterizations.


2020 ◽  
Vol 20 (13) ◽  
pp. 8047-8062
Author(s):  
Joel Alroe ◽  
Luke T. Cravigan ◽  
Branka Miljevic ◽  
Graham R. Johnson ◽  
Paul Selleck ◽  
...  

Abstract. Cloud–radiation interactions over the Southern Ocean are not well constrained in climate models, in part due to uncertainties in the sources, concentrations, and cloud-forming potential of aerosol in this region. To date, most studies in this region have reported measurements from fixed terrestrial stations or a limited set of instrumentation and often present findings as broad seasonal or latitudinal trends. Here, we present an extensive set of aerosol and meteorological observations obtained during an austral summer cruise across the full width of the Southern Ocean south of Australia. Three episodes of continental-influenced air masses were identified, including an apparent transition between the Ferrel atmospheric cell and the polar cell at approximately 64∘ S, and accompanied by the highest median cloud condensation nuclei (CCN) concentrations, at 252 cm−3. During the other two episodes, synoptic-scale weather patterns diverted air masses across distances greater than 1000 km from the Australian and Antarctic coastlines, respectively, indicating that a large proportion of the Southern Ocean may be periodically influenced by continental air masses. In all three cases, a highly cloud-active accumulation mode dominated the size distribution, with up to 93 % of the total number concentration activating as CCN. Frequent cyclonic weather conditions were observed at high latitudes and the associated strong wind speeds led to predictions of high concentrations of sea spray aerosol. However, these modelled concentrations were not achieved due to increased aerosol scavenging rates from precipitation and convective transport into the free troposphere, which decoupled the air mass from the sea spray flux at the ocean surface. CCN concentrations were more strongly impacted by high concentrations of large-diameter Aitken mode aerosol in air masses which passed over regions of elevated marine biological productivity, potentially contributing up to 56 % of the cloud condensation nuclei concentration. Weather systems were vital for aerosol growth in biologically influenced air masses and in their absence ultrafine aerosol diameters were less than 30 nm. These results demonstrate that air mass meteorological history must be considered when modelling sea spray concentrations and highlight the potential importance of sub-grid-scale variability when modelling atmospheric conditions in the remote Southern Ocean.


2019 ◽  
Vol 116 (41) ◽  
pp. 20309-20314 ◽  
Author(s):  
Georges Saliba ◽  
Chia-Li Chen ◽  
Savannah Lewis ◽  
Lynn M. Russell ◽  
Laura-Helena Rivellini ◽  
...  

Four North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) field campaigns from winter 2015 through spring 2018 sampled an extensive set of oceanographic and atmospheric parameters during the annual phytoplankton bloom cycle. This unique dataset provides four seasons of open-ocean observations of wind speed, sea surface temperature (SST), seawater particle attenuation at 660 nm (cp,660, a measure of ocean particulate organic carbon), bacterial production rates, and sea-spray aerosol size distributions and number concentrations (NSSA). The NAAMES measurements show moderate to strong correlations (0.56 < R < 0.70) between NSSA and local wind speeds in the marine boundary layer on hourly timescales, but this relationship weakens in the campaign averages that represent each season, in part because of the reduction in range of wind speed by multiday averaging. NSSA correlates weakly with seawater cp,660 (R = 0.36, P << 0.01), but the correlation with cp,660, is improved (R = 0.51, P < 0.05) for periods of low wind speeds. In addition, NAAMES measurements provide observational dependence of SSA mode diameter (dm) on SST, with dm increasing to larger sizes at higher SST (R = 0.60, P << 0.01) on hourly timescales. These results imply that climate models using bimodal SSA parameterizations to wind speed rather than a single SSA mode that varies with SST may overestimate SSA number concentrations (hence cloud condensation nuclei) by a factor of 4 to 7 and may underestimate SSA scattering (hence direct radiative effects) by a factor of 2 to 5, in addition to overpredicting variability in SSA scattering from wind speed by a factor of 5.


2011 ◽  
Vol 11 (2) ◽  
pp. 5757-5784 ◽  
Author(s):  
D. M. Westervelt ◽  
R. H. Moore ◽  
A. Nenes ◽  
P. J. Adams

Abstract. This work quantifies the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of NaCl. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr−1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only 15% in a biologically active region of the Southern Ocean.


2013 ◽  
Vol 13 (14) ◽  
pp. 7263-7278 ◽  
Author(s):  
R. Blot ◽  
A. D. Clarke ◽  
S. Freitag ◽  
V. Kapustin ◽  
S. G. Howell ◽  
...  

Abstract. Accurate measurements of natural aerosol emissions over the ocean are needed to estimate the anthropogenic impact on the environment. In this study, we measured sea spray aerosol (SSA) concentrations with diameters larger than 0.040 μm produced by open-ocean breaking waves over the SEP (southeastern Pacific). Robust statistics were established through repeated airborne flights over 1000 km along 20° S from the coastline of Chile to 85° W during VOCALS-REx (VAMOS Ocean-Cloud-Atmosphere-Land-Study Regional Experiment). Non-volatile SSA number concentrations were inferred using a thermally resolved technique constrained for clean conditions with an Ångström exponent below 0.5, black carbon mass concentration at values lower than 15 ng m−3 and organic aerosol concentration less than 0.02 μg m−3. We found that number concentrations of SSAs active as cloud condensation nuclei (CCN) for a supersaturation of 0.25% varied between 17 and 36 cm−3, but these did not increase with the increasing mean wind speed typically observed further offshore along 20° S. Concurrent increases in mean offshore precipitation rate in excess of about 1 mm d−1 indicate that scavenging of SSAs by precipitation exceeds increases in production at wind speeds above about 8 m s−1. This demonstrates the critical role of precipitation as a major sink of SSA over the remote ocean. Finally, we found that under clean conditions and for estimated stratus supersaturations between 0.20 and 0.43%, SSA represented about 20% of the total potential CCN along 20° S.


Sign in / Sign up

Export Citation Format

Share Document