Prefrontal cortex and decision making in a mixed-strategy game

2004 ◽  
Vol 7 (4) ◽  
pp. 404-410 ◽  
Author(s):  
Dominic J Barraclough ◽  
Michelle L Conroy ◽  
Daeyeol Lee
Author(s):  
Lee Peyton ◽  
Alfredo Oliveros ◽  
Doo-Sup Choi ◽  
Mi-Hyeon Jang

AbstractPsychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shion Maeda ◽  
Nicolas Chauvet ◽  
Hayato Saigo ◽  
Hirokazu Hori ◽  
Guillaume Bachelier ◽  
...  

AbstractCollective decision making is important for maximizing total benefits while preserving equality among individuals in the competitive multi-armed bandit (CMAB) problem, wherein multiple players try to gain higher rewards from multiple slot machines. The CMAB problem represents an essential aspect of applications such as resource management in social infrastructure. In a previous study, we theoretically and experimentally demonstrated that entangled photons can physically resolve the difficulty of the CMAB problem. This decision-making strategy completely avoids decision conflicts while ensuring equality. However, decision conflicts can sometimes be beneficial if they yield greater rewards than non-conflicting decisions, indicating that greedy actions may provide positive effects depending on the given environment. In this study, we demonstrate a mixed strategy of entangled- and correlated-photon-based decision-making so that total rewards can be enhanced when compared to the entangled-photon-only decision strategy. We show that an optimal mixture of entangled- and correlated-photon-based strategies exists depending on the dynamics of the reward environment as well as the difficulty of the given problem. This study paves the way for utilizing both quantum and classical aspects of photons in a mixed manner for decision making and provides yet another example of the supremacy of mixed strategies known in game theory, especially in evolutionary game theory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


Sign in / Sign up

Export Citation Format

Share Document