Activity in human ventral striatum locked to errors of reward prediction

10.1038/nn802 ◽  
2002 ◽  
Vol 5 (2) ◽  
pp. 97-98 ◽  
Author(s):  
Giuseppe Pagnoni ◽  
Caroline F. Zink ◽  
P. Read Montague ◽  
Gregory S. Berns
2020 ◽  
Author(s):  
Pramod Kaushik ◽  
Jérémie Naudé ◽  
Surampudi Bapi Raju ◽  
Frédéric Alexandre

AbstractClassical Conditioning is a fundamental learning mechanism where the Ventral Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA) Dopamine neurons when a reward is expected. However, recent evidences point to a new candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA. In this system-level computational model, the VTA GABA signal is hypothesised to be a combination of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively. This dissociation enables the model to explain recent results wherein Ventral Striatum lesions affected the temporal expectation of the reward but the magnitude of the reward was intact. This model also exhibits other features in classical conditioning namely, progressively decreasing firing for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and cancellation of US dopamine after training.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S11-S11
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Background Increased striatal dopamine synthesis capacity (DSC) has consistently been reported in patients with schizophrenia (Sz). However, the functional mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error (RPE) signaling during reinforcement learning. Methods In this study, we investigated striatal DSC and RPEs and their association in unmedicated Sz and healthy controls. 23 healthy controls (HC) and 20 unmedicated Sz took part in an FDOPA-PET scan measuring DSC and underwent fMRI scanning, where they performed a reversal learning paradigm. We compared groups regarding DSC und neural RPE signals and probed the respective correlation (23 HC and 16 Sz for both measures). Results There was no significant difference between HC and Sz in DSC. Taking into account comorbid alcohol abuse revealed that only patients without such abuse showed elevated DSC in the associative and sensorimotor striatum, while those with abuse did not differ from HC. Patients performed worse during learning, accompanied by a reduced RPE signal in the ventral striatum. In HC, the DSC in the limbic striatum correlated with higher RPE signaling, while there was no significant association in patients. DSC in the associative striatum correlated with higher positive symptoms, and blunted RPE signaling was associated with negative symptoms. Discussion Our results suggest that dopamine modulation of RPE is impaired in schizophrenia. Furthermore, we observed a dissociation with elevated DSC in the associative and sensorimotor striatum contributing to positive symptoms and blunted RPE in the ventral striatum to negative symptoms.


2020 ◽  
pp. JN-RM-1785-20
Author(s):  
Cristian B. Calderon ◽  
Esther De Loof ◽  
Kate Ergo ◽  
Anna Snoeck ◽  
Carsten N. Boehler ◽  
...  

2018 ◽  
Author(s):  
Jung Eun Han ◽  
Johannes Frasnelli ◽  
Yashar Zeighami ◽  
Kevin Larcher ◽  
Julie Boyle ◽  
...  

SummaryVulnerability to obesity includes eating in response to food cues, which acquire incentive value through conditioning. The conditioning process is largely subserved by dopamine, theorized to encode the discrepancy between expected and actual rewards, known as the reward prediction error (RPE). Ghrelin is a gut-derived homeostatic hormone that triggers hunger and eating. Despite extensive evidence that ghrelin stimulates dopamine, it remains unknown in humans if ghrelin modulates food cue learning. Here we show using functional magnetic resonance imaging that intravenously administered ghrelin increased RPE-related activity in dopamine-responsive areas during food odor conditioning in healthy volunteers. Participants responded faster to food odor-associated cues and perceived them to be more pleasant following ghrelin injection. Ghrelin also increased functional connectivity between hippocampus and ventral striatum. Our work demonstrates that ghrelin promotes the ability of cues to acquire incentive salience, and has implications for the development of vulnerability to obesity.


2020 ◽  
Vol 46 (6) ◽  
pp. 1535-1546
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms.


2007 ◽  
Vol 97 (4) ◽  
pp. 3036-3045 ◽  
Author(s):  
Signe Bray ◽  
John O'Doherty

Attractive faces can be considered to be a form of visual reward. Previous imaging studies have reported activity in reward structures including orbitofrontal cortex and nucleus accumbens during presentation of attractive faces. Given that these stimuli appear to act as rewards, we set out to explore whether it was possible to establish conditioning in human subjects by pairing presentation of arbitrary affectively neutral stimuli with subsequent presentation of attractive and unattractive faces. Furthermore, we scanned human subjects with functional magnetic resonance imaging (fMRI) while they underwent this conditioning procedure to determine whether a reward-prediction error signal is engaged during learning with attractive faces as is known to be the case for learning with other types of reward such as juice and money. Subjects showed changes in behavioral ratings to the conditioned stimuli (CS) when comparing post- to preconditioning evaluations, notably for those CSs paired with attractive female faces. We used a simple Rescorla-Wagner learning model to generate a reward-prediction error signal and entered this into a regression analysis with the fMRI data. We found significant prediction error-related activity in the ventral striatum during conditioning with attractive compared with unattractive faces. These findings suggest that an arbitrary stimulus can acquire conditioned value by being paired with pleasant visual stimuli just as with other types of reward such as money or juice. This learning process elicits a reward-prediction error signal in a main target structure of dopamine neurons: the ventral striatum. The findings we describe here may provide insights into the neural mechanisms tapped into by advertisers seeking to influence behavioral preferences by repeatedly exposing consumers to simple associations between products and rewarding visual stimuli such as pretty faces.


2009 ◽  
Vol 21 (7) ◽  
pp. 1332-1345 ◽  
Author(s):  
Thorsten Kahnt ◽  
Soyoung Q Park ◽  
Michael X Cohen ◽  
Anne Beck ◽  
Andreas Heinz ◽  
...  

It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to the DS and the VS seem to play a critical role in this functional distinction. Here, subjects performed a dynamic, reward-based decision-making task during fMRI acquisition. A computational model of reinforcement learning was used to estimate the different effects of positive and negative reinforcements on future decisions for each subject individually. We found that activity in both the DS and the VS correlated with reward prediction errors. Using functional connectivity, we show that the DS and the VS are differentially connected to different midbrain regions (possibly corresponding to the substantia nigra [SN] and the ventral tegmental area [VTA], respectively). However, only functional connectivity between the DS and the putative SN predicted the impact of different reinforcement types on future behavior. These results suggest that connections between the putative SN and the DS are critical for modulating action values in the DS according to both positive and negative reinforcements to guide future decision making.


2011 ◽  
Vol 17 (3) ◽  
pp. 280-289 ◽  
Author(s):  
R W Morris ◽  
A Vercammen ◽  
R Lenroot ◽  
L Moore ◽  
J M Langton ◽  
...  

Neuron ◽  
2016 ◽  
Vol 91 (1) ◽  
pp. 182-193 ◽  
Author(s):  
Yuji K. Takahashi ◽  
Angela J. Langdon ◽  
Yael Niv ◽  
Geoffrey Schoenbaum

Sign in / Sign up

Export Citation Format

Share Document