Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells

2015 ◽  
Vol 10 (12) ◽  
pp. 2054-2063 ◽  
Author(s):  
Xiaohua Wang ◽  
Xiaojuan Li ◽  
Xin Deng ◽  
Doan-Trung Luu ◽  
Christophe Maurel ◽  
...  
2021 ◽  
pp. 000370282110099
Author(s):  
Ziyu Yang ◽  
Haiqi Xu ◽  
Jiayu Wang ◽  
Wei Chen ◽  
Meiping Zhao

Fluorescence-based single molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labelling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labelling sites, experimental setup and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.


2018 ◽  
Vol 11 (11) ◽  
pp. 1315-1327 ◽  
Author(s):  
Yaning Cui ◽  
Meng Yu ◽  
Xiaomin Yao ◽  
Jingjing Xing ◽  
Jinxing Lin ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5071
Author(s):  
Ai-Yu Guo ◽  
Ya-Mei Zhang ◽  
Liu Wang ◽  
Di Bai ◽  
Ya-Peng Xu ◽  
...  

Single-molecule imaging is emerging as a revolutionary approach to studying fundamental questions in plants. However, compared with its use in animals, the application of single-molecule imaging in plants is still underexplored. Here, we review the applications, advantages, and challenges of single-molecule fluorescence imaging in plant systems from the perspective of methodology. Firstly, we provide a general overview of single-molecule imaging methods and their principles. Next, we summarize the unprecedented quantitative details that can be obtained using single-molecule techniques compared to bulk assays. Finally, we discuss the main problems encountered at this stage and provide possible solutions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these issues, we present here a robust computer program, called FluoSim, which is an interactive simulator of membrane protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. FluoSim integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the localization and intensity of thousands of independent molecules in 2D cellular geometries, providing simulated data directly comparable to actual experiments. FluoSim was thoroughly validated against experimental data obtained on the canonical neurexin-neuroligin adhesion complex at cell–cell contacts. This unified software allows one to model and predict membrane protein dynamics and localization at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments.


2006 ◽  
Vol 46 (3) ◽  
pp. 164-168
Author(s):  
Hiroaki YOKOTA ◽  
Tetsuichi WAZAWA ◽  
Yoshiharu ISHII

2021 ◽  
Vol 11 (6) ◽  
pp. 2773
Author(s):  
Hiroaki Yokota ◽  
Atsuhito Fukasawa ◽  
Minako Hirano ◽  
Toru Ide

Over the years, fluorescence microscopy has evolved and has become a necessary element of life science studies. Microscopy has elucidated biological processes in live cells and organisms, and also enabled tracking of biomolecules in real time. Development of highly sensitive photodetectors and light sources, in addition to the evolution of various illumination methods and fluorophores, has helped microscopy acquire single-molecule fluorescence sensitivity, enabling single-molecule fluorescence imaging and detection. Low-light photodetectors used in microscopy are classified into two categories: point photodetectors and wide-field photodetectors. Although point photodetectors, notably photomultiplier tubes (PMTs), have been commonly used in laser scanning microscopy (LSM) with a confocal illumination setup, wide-field photodetectors, such as electron-multiplying charge-coupled devices (EMCCDs) and scientific complementary metal-oxide-semiconductor (sCMOS) cameras have been used in fluorescence imaging. This review focuses on the former low-light point photodetectors and presents their fluorescence microscopy applications and recent progress. These photodetectors include conventional PMTs, single photon avalanche diodes (SPADs), hybrid photodetectors (HPDs), in addition to newly emerging photodetectors, such as silicon photomultipliers (SiPMs) (also known as multi-pixel photon counters (MPPCs)) and superconducting nanowire single photon detectors (SSPDs). In particular, this review shows distinctive features of HPD and application of HPD to wide-field single-molecule fluorescence detection.


Sign in / Sign up

Export Citation Format

Share Document