scholarly journals Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data

2013 ◽  
Vol 14 (6) ◽  
pp. 390-403 ◽  
Author(s):  
Job Dekker ◽  
Marc A. Marti-Renom ◽  
Leonid A. Mirny
2018 ◽  
Vol 120 (3) ◽  
pp. 3056-3070 ◽  
Author(s):  
Diana L. Gerrard ◽  
Yao Wang ◽  
Malaina Gaddis ◽  
Yufan Zhou ◽  
Junbai Wang ◽  
...  

2017 ◽  
Vol 73 (3) ◽  
pp. 279-285
Author(s):  
Charlotte M. Deane ◽  
Ian D. Wall ◽  
Darren V. S. Green ◽  
Brian D. Marsden ◽  
Anthony R. Bradley

In this work, two freely available web-based interactive computational tools that facilitate the analysis and interpretation of protein–ligand interaction data are described. Firstly,WONKA, which assists in uncovering interesting and unusual features (for example residue motions) within ensembles of protein–ligand structures and enables the facile sharing of observations between scientists. Secondly,OOMMPPAA, which incorporates protein–ligand activity data with protein–ligand structural data using three-dimensional matched molecular pairs.OOMMPPAAhighlights nuanced structure–activity relationships (SAR) and summarizes available protein–ligand activity data in the protein context. In this paper, the background that led to the development of both tools is described. Their implementation is outlined and their utility using in-house Structural Genomics Consortium (SGC) data sets and openly available data from the PDB and ChEMBL is described. Both tools are freely available to use and download at http://wonka.sgc.ox.ac.uk/WONKA/ and http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/.


2019 ◽  
Vol 35 (17) ◽  
pp. 2916-2923 ◽  
Author(s):  
John C Stansfield ◽  
Kellen G Cresswell ◽  
Mikhail G Dozmorov

Abstract Motivation With the development of chromatin conformation capture technology and its high-throughput derivative Hi-C sequencing, studies of the three-dimensional interactome of the genome that involve multiple Hi-C datasets are becoming available. To account for the technology-driven biases unique to each dataset, there is a distinct need for methods to jointly normalize multiple Hi-C datasets. Previous attempts at removing biases from Hi-C data have made use of techniques which normalize individual Hi-C datasets, or, at best, jointly normalize two datasets. Results Here, we present multiHiCcompare, a cyclic loess regression-based joint normalization technique for removing biases across multiple Hi-C datasets. In contrast to other normalization techniques, it properly handles the Hi-C-specific decay of chromatin interaction frequencies with the increasing distance between interacting regions. multiHiCcompare uses the general linear model framework for comparative analysis of multiple Hi-C datasets, adapted for the Hi-C-specific decay of chromatin interaction frequencies. multiHiCcompare outperforms other methods when detecting a priori known chromatin interaction differences from jointly normalized datasets. Applied to the analysis of auxin-treated versus untreated experiments, and CTCF depletion experiments, multiHiCcompare was able to recover the expected epigenetic and gene expression signatures of loss of chromatin interactions and reveal novel insights. Availability and implementation multiHiCcompare is freely available on GitHub and as a Bioconductor R package https://bioconductor.org/packages/multiHiCcompare. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Haitham Ashoor ◽  
Xiaowen Chen ◽  
Wojciech Rosikiewicz ◽  
Jiahui Wang ◽  
Albert Cheng ◽  
...  

2019 ◽  
Author(s):  
R N Ramirez ◽  
K Bedirian ◽  
S M Gray ◽  
A Diallo

Abstract Motivation Visualization of multiple genomic data generally requires the use of public or commercially hosted browsers. Flexible visualization of chromatin interaction data as genomic features and network components offer informative insights to gene expression. An open source application for visualizing HiC and chromatin conformation-based data as 2D-arcs accompanied by interactive network analyses is valuable. Results DNA Rchitect is a new tool created to visualize HiC and chromatin conformation-based contacts at high (Kb) and low (Mb) genomic resolutions. The user can upload their pre-filtered HiC experiment in bedpe format to the DNA Rchitect web app that we have hosted or to a version they themselves have deployed. Using DNA Rchitect, the uploaded data allows the user to visualize different interactions of their sample, perform simple network analyses, while also offering visualization of other genomic data types. The user can then download their results for additional network functionality offered in network based programs such as Cytoscape. Availability and implementation DNA Rchitect is freely available both as a web application written primarily in R available at http://shiny.immgen.org/DNARchitect/ and as an open source released under an MIT license at: https://github.com/alosdiallo/DNA_Rchitect.


2016 ◽  
Vol 44 (11) ◽  
pp. e106-e106 ◽  
Author(s):  
Yong Chen ◽  
Yunfei Wang ◽  
Zhenyu Xuan ◽  
Min Chen ◽  
Michael Q. Zhang

2019 ◽  
Author(s):  
Minji Kim ◽  
Meizhen Zheng ◽  
Simon Zhongyuan Tian ◽  
Daniel Capurso ◽  
Byoungkoo Lee ◽  
...  

AbstractThe single-molecule multiplex chromatin interaction data generated by emerging non-ligation-based 3D genome mapping technologies provide novel insights into high dimensional chromatin organization, yet introduce new computational challenges. We developed MIA-Sig (https://github.com/TheJacksonLaboratory/mia-sig.git), an algorithmic framework to de-noise the data, assess the statistical significance of chromatin complexes, and identify topological domains and inter-domain contacts. On chromatin immunoprecipitation (ChIP)-enriched data, MIA-Sig can clearly distinguish the protein-associated interactions from the non-specific topological domains.


2021 ◽  
Author(s):  
Soohyun Lee ◽  
Carl Vitzthum ◽  
Burak H. Alver ◽  
Peter J. Park

AbstractSummaryAs the amount of three-dimensional chromosomal interaction data continues to increase, storing and accessing such data efficiently becomes paramount. We introduce Pairs, a block-compressed text file format for storing paired genomic coordinates from Hi-C data, and Pairix, an open-source C application to index and query Pairs files. Pairix (also available in Python and R) extends the functionalities of Tabix to paired coordinates data. We have also developed PairsQC, a collapsible HTML quality control report generator for Pairs files.AvailabilityThe format specification and source code are available at https://github.com/4dn-dcic/pairix, https://github.com/4dn-dcic/Rpairix and https://github.com/4dn-dcic/[email protected] or [email protected]


2017 ◽  
Author(s):  
Yanli Wang ◽  
Bo Zhang ◽  
Lijun Zhang ◽  
Lin An ◽  
Jie Xu ◽  
...  

ABSTRACTRecent advent of 3C-based technologies such as Hi-C and ChIA-PET provides us an opportunity to explore chromatin interactions and 3D genome organization in an unprecedented scale and resolution. However, it remains a challenge to visualize chromatin interaction data due to its size and complexity. Here, we introduce the 3D Genome Browser (http://3dgenome.org), which allows users to conveniently explore both publicly available and their own chromatin interaction data. Users can also seamlessly integrate other “omics” data sets, such as ChIP-Seq and RNA-Seq for the same genomic region, to gain a complete view of both regulatory landscape and 3D genome structure for any given gene. Finally, our browser provides multiple methods to link distal cis-regulatory elements with their potential target genes, including virtual 4C, ChIA-PET, Capture Hi-C and cross-cell-type correlation of proximal and distal DNA hypersensitive sites, and therefore represents a valuable resource for the study of gene regulation in mammalian genomes.


Sign in / Sign up

Export Citation Format

Share Document