scholarly journals The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions

2017 ◽  
Author(s):  
Yanli Wang ◽  
Bo Zhang ◽  
Lijun Zhang ◽  
Lin An ◽  
Jie Xu ◽  
...  

ABSTRACTRecent advent of 3C-based technologies such as Hi-C and ChIA-PET provides us an opportunity to explore chromatin interactions and 3D genome organization in an unprecedented scale and resolution. However, it remains a challenge to visualize chromatin interaction data due to its size and complexity. Here, we introduce the 3D Genome Browser (http://3dgenome.org), which allows users to conveniently explore both publicly available and their own chromatin interaction data. Users can also seamlessly integrate other “omics” data sets, such as ChIP-Seq and RNA-Seq for the same genomic region, to gain a complete view of both regulatory landscape and 3D genome structure for any given gene. Finally, our browser provides multiple methods to link distal cis-regulatory elements with their potential target genes, including virtual 4C, ChIA-PET, Capture Hi-C and cross-cell-type correlation of proximal and distal DNA hypersensitive sites, and therefore represents a valuable resource for the study of gene regulation in mammalian genomes.

Author(s):  
Ruochi Zhang ◽  
Jian Ma

AbstractAdvances in high-throughput mapping of 3D genome organization have enabled genome-wide characterization of chromatin interactions. However, proximity ligation based mapping approaches for pairwise chromatin interaction such as Hi-C cannot capture multi-way interactions, which are informative to delineate higher-order genome organization and gene regulation mechanisms at single-nucleus resolution. The very recent development of ligation-free chromatin interaction mapping methods such as SPRITE and ChIA-Drop has offered new opportunities to uncover simultaneous interactions involving multiple genomic loci within the same nuclei. Unfortunately, methods for analyzing multi-way chromatin interaction data are significantly underexplored. Here we develop a new computational method, called MATCHA, based on hypergraph representation learning where multi-way chromatin interactions are represented as hyperedges. Applications to SPRITE and ChIA-Drop data suggest that MATCHA is effective to denoise the data and make de novo predictions of multi-way chromatin interactions, reducing the potential false positives and false negatives from the original data. We also show that MATCHA is able to distinguish between multi-way interaction in a single nucleus and combination of pairwise interactions in a cell population. In addition, the embeddings from MATCHA reflect 3D genome spatial localization and function. MATCHA provides a promising framework to significantly improve the analysis of multi-way chromatin interaction data and has the potential to offer unique insights into higher-order chromosome organization and function.


2019 ◽  
Author(s):  
Guoliang Li ◽  
Tongkai Sun ◽  
Huidan Chang ◽  
Liuyang Cai ◽  
Ping Hong ◽  
...  

AbstractUnderstanding chromatin interactions is important since they create chromosome conformation and link the cis- and trans-regulatory elements to their target genes for transcriptional regulation. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing is a genome-wide high-throughput technology that detects chromatin interactions associated with a specific protein of interest. Previously we developed ChIA-PET Tool in 2010 for ChIA-PET data analysis. Here we present the updated version of ChIA-PET Tool (V3), is a computational package to process the next-generation sequence data generated from ChIA-PET experiments. It processes the short-read data and long-read ChIA-PET data with multithreading and generates the statistics of results in a HTML file. In this paper, we provide a detailed demonstration of the design of ChIA-PET Tool V3 and how to install it and analyze a specific ChIA-PET data set with it. At present, other ChIA-PET data analysis tools have developed including ChiaSig, MICC, Mango and ChIA-PET2 and so on. We compared our tool with other tools using the same public data set in the same machine. Most of peaks detected by ChIA-PET Tool V3 overlap with those from other tools. There is higher enrichment for significant chromatin interactions of ChIA-PET Tool V3 in APA plot. ChIA-PET Tool V3 is open source and is available at GitHub (https://github.com/GuoliangLi-HZAU/ChIA-PET_Tool_V3/).


2021 ◽  
Author(s):  
Noha Osman ◽  
Abd-El-Monsif Shawky ◽  
Michal Brylinski

Abstract Background: Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging.Results: In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants.Conclusions: Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.


2020 ◽  
Author(s):  
Noha Osman ◽  
Michal Brylinski

AbstractNumerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.


2019 ◽  
Author(s):  
Ron Schwessinger ◽  
Matthew Gosden ◽  
Damien Downes ◽  
Richard Brown ◽  
Jelena Telenius ◽  
...  

AbstractUnderstanding 3D genome structure requires high throughput, genome-wide approaches. However, assays for all vs. all chromatin interaction mapping are expensive and time consuming, which severely restricts their usage for large-scale mutagenesis screens or for mapping the impact of sequence variants. Computational models sophisticated enough to grasp the determinants of chromatin folding provide a unique window into the functional determinants of 3D genome structure as well as the effects of genome variation.A chromatin interaction predictor should work at the base pair level but also incorporate large-scale genomic context to simultaneously capture the large scale and intricate structures of chromatin architecture. Similarly, to be a flexible and generalisable approach it should also be applicable to data it has not been explicitly trained on. To develop a model with these properties, we designed a deep neuronal network (deepC) that utilizes transfer learning to accurately predict chromatin interactions from DNA sequence at megabase scale. The model generalizes well to unseen chromosomes and works across cell types, Hi-C data resolutions and a range of sequencing depths. DeepC integrates DNA sequence context on an unprecedented scale, bridging the different levels of resolution from base pairs to TADs. We demonstrate how this model allows us to investigate sequence determinants of chromatin folding at genome-wide scale and to predict the importance of regulatory elements and the impact of sequence variations.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 554 ◽  
Author(s):  
Li ◽  
Sun ◽  
Chang ◽  
Cai ◽  
Hong ◽  
...  

Understanding chromatin interactions is important because they create chromosome conformation and link the cis- and trans- regulatory elements to their target genes for transcriptional regulation. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing is a genome-wide high-throughput technology that detects chromatin interactions associated with a specific protein of interest. We developed ChIA-PET Tool for ChIA-PET data analysis in 2010. Here, we present the updated version of ChIA-PET Tool (V3) as a computational package to process the next-generation sequence data generated from ChIA-PET experiments. It processes short-read and long-read ChIA-PET data with multithreading and generates statistics of results in an HTML file. In this paper, we provide a detailed demonstration of the design of ChIA-PET Tool V3 and how to install it and analyze RNA polymerase II (RNAPII) ChIA-PET data from human K562 cells with it. We compared our tool with existing tools, including ChiaSig, MICC, Mango and ChIA-PET2, by using the same public data set in the same computer. Most peaks detected by the ChIA-PET Tool V3 overlap with those of other tools. There is higher enrichment for significant chromatin interactions from ChIA-PET Tool V3 in aggregate peak analysis (APA) plots. The ChIA-PET Tool V3 is publicly available at GitHub.


2016 ◽  
Vol 113 (12) ◽  
pp. E1663-E1672 ◽  
Author(s):  
Harianto Tjong ◽  
Wenyuan Li ◽  
Reza Kalhor ◽  
Chao Dai ◽  
Shengli Hao ◽  
...  

Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sambhavi Animesh ◽  
Ruchi Choudhary ◽  
Bertrand Jern Han Wong ◽  
Charlotte Tze Jia Koh ◽  
Xin Yi Ng ◽  
...  

Nasopharyngeal cancer (NPC), a cancer derived from epithelial cells in the nasopharynx, is a cancer common in China, Southeast Asia, and Africa. The three-dimensional (3D) genome organization of nasopharyngeal cancer is poorly understood. A major challenge in understanding the 3D genome organization of cancer samples is the lack of a method for the characterization of chromatin interactions in solid cancer needle biopsy samples. Here, we developed Biop-C, a modified in situ Hi-C method using solid cancer needle biopsy samples. We applied Biop-C to characterize three nasopharyngeal cancer solid cancer needle biopsy patient samples. We identified topologically associated domains (TADs), chromatin interaction loops, and frequently interacting regions (FIREs) at key oncogenes in nasopharyngeal cancer from the Biop-C heatmaps. We observed that the genomic features are shared at some important oncogenes, but the patients also display extensive heterogeneity at certain genomic loci. On analyzing the super enhancer landscape in nasopharyngeal cancer cell lines, we found that the super enhancers are associated with FIREs and can be linked to distal genes via chromatin loops in NPC. Taken together, our results demonstrate the utility of our Biop-C method in investigating 3D genome organization in solid cancers.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 289 ◽  
Author(s):  
Ping Hong ◽  
Hao Jiang ◽  
Weize Xu ◽  
Da Lin ◽  
Qian Xu ◽  
...  

It is becoming increasingly important to understand the mechanism of regulatory elements on target genes in long-range genomic distance. 3C (chromosome conformation capture) and its derived methods are now widely applied to investigate three-dimensional (3D) genome organizations and gene regulation. Digestion-ligation-only Hi-C (DLO Hi-C) is a new technology with high efficiency and cost-effectiveness for whole-genome chromosome conformation capture. Here, we introduce the DLO Hi-C tool, a flexible and versatile pipeline for processing DLO Hi-C data from raw sequencing reads to normalized contact maps and for providing quality controls for different steps. It includes more efficient iterative mapping and linker filtering. We applied the DLO Hi-C tool to different DLO Hi-C datasets and demonstrated its ability in processing large data with multithreading. The DLO Hi-C tool is suitable for processing DLO Hi-C and in situ DLO Hi-C datasets. It is convenient and efficient for DLO Hi-C data processing.


Sign in / Sign up

Export Citation Format

Share Document