scholarly journals Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1–2 trial

Leukemia ◽  
2021 ◽  
Author(s):  
Yajing Zhang ◽  
Yao Wang ◽  
Yang Liu ◽  
Chuan Tong ◽  
Chunmeng Wang ◽  
...  

AbstractIncreasing the remission rate and reducing the recurrence rate can improve the clinical efficacy of chimeric antigen receptor (CAR) T cell therapy in recurrent/refractory non-Hodgkin lymphoma (r/rNHL). In this open-label, single-arm phase I/II trial, 87 patients with r/rNHL, including 58 patients with aggressive diffuse large B-cell lymphoma and 24 with high tumour burden, received an infusion at doses of 0.5 × 106–8 × 106 TanCAR7 T cells per kilogram of body weight after conditioning chemotherapy. The best overall response rate was 78% (95% confidence interval [CI], 68–86); response rates were consistent across prognostic subgroups. The median follow-up was 27.7 months. The median progression-free survival was 27.6 months (95% CI, 11 to not reached). Cytokine release syndrome (CRS) occurred in 61 patients (70%) with 60% of cases being grade 1 or 2 and 10% being grade 3 or greater. Grade 3 CAR T cell-related encephalopathy syndrome (CRES) occurred in 2 patients (2%). Two patients died from treatment-associated severe pulmonary infection, and one died from CRS-related pulmonary injury between 1 and 3 months post infusion. Long-term remissions were observed following the use of TanCAR7 T cells in r/rNHL with a safety profile that included CRS but few cases of CRES.

2020 ◽  
Vol 38 (32) ◽  
pp. 3805-3815
Author(s):  
Kathryn M. Cappell ◽  
Richard M. Sherry ◽  
James C. Yang ◽  
Stephanie L. Goff ◽  
Danielle A. Vanasse ◽  
...  

PURPOSE Anti-CD19 chimeric antigen receptors (CARs) are artificial fusion proteins that cause CD19-specific T-cell activation. Durability of remissions and incidence of long-term adverse events are critical factors determining the utility of anti-CD19 CAR T-cell therapy, but long-term follow-up of patients treated with anti-CD19 CAR T cells is limited. This work provides the longest follow-up of patients in remission after anti-CD19 CAR T-cell therapy. METHODS Between 2009 and 2015, we administered 46 CAR T-cell treatments to 43 patients (ClinicalTrials.gov identifier: NCT00924326 ). Patients had relapsed B-cell malignancies of the following types: diffuse large B-cell lymphoma or primary mediastinal B-cell lymphoma (DLBCL/PMBCL; n = 28), low-grade B-cell lymphoma (n = 8), or chronic lymphocytic leukemia (CLL; n = 7). This report focuses on long-term outcomes of these patients. The CAR used was FMC63-28Z; axicabtagene ciloleucel uses the same CAR. Cyclophosphamide plus fludarabine conditioning chemotherapy was administered before CAR T cells. RESULTS The percentages of CAR T-cell treatments resulting in a > 3-year duration of response (DOR) were 51% (95% CI, 35% to 67%) for all evaluable treatments, 48% (95% CI, 28% to 69%) for DLBCL/PMBCL, 63% (95% CI, 25% to 92%) for low-grade lymphoma, and 50% (95% CI, 16% to 84%) for CLL. The median event-free survival of all 45 evaluable treatments was 55 months. Long-term adverse effects were rare, except for B-cell depletion and hypogammaglobulinemia. Median peak blood CAR-positive cell levels were higher among patients with a DOR of > 3 years (98/µL; range, 9-1,217/µL) than among patients with a DOR of < 3 years (18/µL; range, 0-308/μL, P = .0051). CONCLUSION Complete remissions of a variety of B-cell malignancies lasting ≥ 3 years occurred after 51% of evaluable anti-CD19 CAR T-cell treatments. Remissions of up to 9 years are ongoing. Late adverse events were rare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2800-2800
Author(s):  
Michael Olson ◽  
Tim Luetkens ◽  
Fiorella Iglesias ◽  
Sabarinath Radhakrishnan ◽  
Jennie Y. Law ◽  
...  

Abstract B cell lymphoma is the most common hematologic malignancy in the United States. Although treatment options have greatly improved in the past several decades, outcomes for patients with relapsed B cell lymphoma remain poor. Chimeric antigen receptor (CAR) T cells have recently entered the clinic with promise to address the gap in effective therapies for patients relapsed B cell lymphoma. However, antigen loss and poor CAR T cell persistence has been shown to drive resistance to the widely approved CD19-targeted CAR in some patients, demonstrating the need for additional therapies. Here, we demonstrate CD229-targeted CAR T cell therapy as a promising option for the treatment of relapsed B cell lymphoma, addressing an important group of patients with typically poor outcomes. CD229 is an immune-modulating receptor expressed on the surface of B cells that we recently found to be highly expressed in the plasma cell neoplasm multiple myeloma (Radhakrishnan et al. 2020). We utilized semi-quantitative PCR and flow cytometry to assess whether CD229 is also expressed on malignant B cells earlier in development as found in B cell lymphoma. Expression analysis revealed the presence of CD229 in a panel of 11 B cell lymphoma cell lines and 45 primary B cell lymphoma samples comprising several subsets of disease including aggressive B cell lymphomas such as diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL) and Burkitt lymphoma as well as indolent subtypes of B cell lymphoma including chronic lymphoblastic leukemia (CLL) and follicular lymphoma. Of note, CD229 was found to be overexpressed on primary B cell lymphoma cells when compared to autologous normal B cells. Given the high levels of CD229 expression throughout all B cell lymphoma subtypes analyzed, we generated CD229 CAR T cells in order to determine whether CAR T cell therapy is an effective way to target CD229 expressing B cell lymphoma cells. CD229 CAR T cells exhibited robust cytotoxicity when cocultured with B cell lymphoma cell lines and primary samples characterized by significant production of TH1 cytokines IL-2, TNF and IFNγ and rapid loss of B cell lymphoma cell viability when compared to control CAR T cells lacking an antigen binding scFv domain (∆scFv CAR T cells). In vivo analysis revealed effective tumor control in NSG mice carrying B cell lymphoma cell lines JeKo-1 (MCL) and DB (DLBCL) when treated with CD229 CAR T cells versus ∆scFv CAR T cells. Finally, we sought to determine the efficacy of CD229 CAR T cells in the context of CD19 CAR T cell therapy relapse. Here, a 71-year-old patient with CLL had an initial response when treated with CD19 CAR T cells but quickly relapsed only 2 months after treatment. Malignant cells from the CLL patient retained CD229 expression as identified by flow cytometry and an ex vivo coculture with CD229 CAR T cells revealed robust killing of CLL cells by CD229 CAR T cells. Transfer of antigen from target cell to CAR T cell by trogocytosis was recently suggested to drive relapse following CAR T cell therapy by decreasing antigen on tumor cells and promoting CAR T cell fratricide (Hamieh et al. 2019). We cocultured CD19 and CD229 CAR T cells with primary CLL cells and assessed CD19 and CD229 expression as well as CAR T cell viability by flow cytometry. In contrast with CD19 CAR T cells, CD229 CARs did not strip their target antigen from the surface of CLL cells. The transfer of CD19 from CLL cells to CD19 CAR T cells resulted in poor CAR T cell viability while CD229 CAR T cell viability remained high following coculture. In summary, we demonstrate that CD229 is a promising therapeutic target in B cell lymphoma due to its high levels of expression throughout many subtypes of disease. CD229 CAR T cells effectively kill B cell lymphoma cells in vitro and control growth of aggressive B cell lymphomas in vivo. Finally, CD229 CAR T cells are effective against primary CLL cells from patients that have relapsed from CD19 CAR T cell therapy and do no exhibit antigen loss by trogocytosis. Taken together, these data suggest that CD229 CAR T cell therapy may be a promising option to address the poor outcomes for patients with relapsed B cell lymphoma. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3012-3012 ◽  
Author(s):  
Kathryn Cappell ◽  
Richard Mark Sherry ◽  
James C. Yang ◽  
Stephanie L. Goff ◽  
Danielle Vanasse ◽  
...  

3012 Background: T cells expressing anti-CD19 chimeric antigen receptors (CARs) can cause complete remissions of relapsed lymphoma. We conducted the first clinical trial of anti-CD19 CAR T cells to show responses against lymphoma. This CAR was later developed as axicabtagene ciloleucel. Here, we aimed to assess the long-term durability of remissions and the long-term adverse effects after anti-CD19 CAR T-cell therapy. Methods: Between 2009 and 2015, we treated 43 patients with anti-CD19 CAR T cells preceded by conditioning chemotherapy of cyclophosphamide plus fludarabine (NCT00924326). Three patients were re-treated for a total of 46 CAR T-cell treatments. Twenty-eight patients had aggressive lymphoma (diffuse large B-cell lymphoma or primary mediastinal B cell lymphoma), eight patients had low-grade lymphoma (five with follicular lymphoma and 1 each with splenic marginal zone lymphoma, mantle cell lymphoma, and unspecified low-grade non-Hodgkin lymphoma), and seven patients had chronic lymphocytic leukemia (CLL). Patients were treated in three cohorts that differed in the CAR T-cell production process and conditioning chemotherapy dose. Results: Of the 43 treated patients, 63% had chemotherapy-refractory lymphoma. Patients had received a median of 4 previous lines of therapy. The median CAR+ T cell dose per kilogram was 2X10^6. The overall remission rate was 76% with 54% complete remissions (CR) and 22% partial remissions (PR). Patients with CR had higher median peak blood CAR levels (86 CAR+ cells/µL) than those who did not have CR (16 CAR+ cells/µL, P= 0.0041). Long-term adverse effects were rare except for B-cell depletion and hypogammaglobulinemia, which both improved over time. Conclusions: This is the longest follow-up study of patients who received anti-CD19 CAR T cells. Anti-CD19 CAR T cells cause highly durable remissions of relapsed B-cell lymphoma and CLL, and long-term adverse effects of anti-CD19 CAR T cells were rare and usually mild. Clinical trial information: NCT00924326 . [Table: see text]


2021 ◽  
Vol 11 ◽  
Author(s):  
Kristin Gerhardt ◽  
Madlen Jentzsch ◽  
Thomas Georgi ◽  
Aleksandra Sretenović ◽  
Michael Cross ◽  
...  

Up to 60% of patients with aggressive B-cell lymphoma who receive chimeric antigen receptor (CAR) T-cell therapy experience treatment failure and subsequently have a poor prognosis. Allogeneic hematopoietic stem cell transplantation (alloHSCT) remains a potentially curative approach for patients in this situation. Induction of a deep response prior to alloHSCT is crucial for long-term outcomes, but the optimal bridging strategy following relapse after CAR T-cell therapy has not yet been established. Polatuzumab vedotin, an antibody drug conjugate targeting CD79b, is a novel treatment option for use in combination with rituximab and bendamustine (Pola-BR) in relapsed or refractory disease. Patients: We report two heavily pretreated patients with primary refractory diffuse large B-cell lymphoma (DLBCL) and primary mediastinal B-cell lymphoma (PMBCL) respectively who relapsed after therapy with CAR T-cells with both nodal and extranodal manifestations of the disease. After application of three courses of Pola-BR both patients achieved a complete metabolic remission. Both patients underwent alloHSCT from a human leukocyte antigen (HLA)-mismatched donor following conditioning with busulfan and fludarabine and are disease free 362 days and 195 days after alloHSCT respectively. We conclude that Pola-BR can be an effective bridging therapy before alloHSCT of patients relapsing after CAR T-cell therapy. Further studies will be necessary to define the depth and durability of remission of this salvage regimen before alloHSCT.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5592
Author(s):  
Edit Porpaczy ◽  
Philipp Wohlfarth ◽  
Oliver Königsbrügge ◽  
Werner Rabitsch ◽  
Cathrin Skrabs ◽  
...  

Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) is associated with poor outcome. The clinical behavior and genetic landscape of DLBCL is heterogeneous and still not fully understood. TP53 mutations in DLBCL have been identified as markers of poor prognosis and are often associated with therapeutic resistance. Chimeric antigen receptor T-cell therapy is an innovative therapeutic concept and represents a game-changing therapeutic option by supporting the patient’s own immune system to kill the tumor cells. We investigated the impact of TP53 mutations on the overall survival of refractory/relapsed DLBCL patients treated with comparable numbers of therapy lines. The minimum number of therapy lines was 2 (median 4), including either anti-CD19 CAR T-cell therapy or conventional salvage therapy. A total of 170 patients with DLBCL and high-grade B-cell lymphoma with MYC, BCL2, and/or BCL6 rearrangements (DHL/THL), diagnosed and treated in our hospital between 2000 and 2021, were included. Twenty-nine of them received CAR T-cell therapy. TP53 mutations were found in 10/29 (35%) and 31/141 (22%) of patients in the CAR T-cell and conventional groups, respectively. Among the 141 patients not treated with CAR T cells, TP53 mutation was an independent prognostic factor for overall survival (OS) (median 12 months with TP53 vs. not reached without TP53 mutation, p < 0.005), but in the CAR T cell treated group, this significance could not be shown (median OS 30 vs. 120 months, p = 0.263). The findings from this monocentric retrospective study indicate that TP53 mutation status does not seem to affect outcomes in DLBCL patients treated with CAR T-cell therapy. Detailed evaluation in large cohorts is warranted.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5821-5821
Author(s):  
David G. Maloney ◽  
Fei Fei Liu ◽  
Lisette Nientker ◽  
Cathelijne Alleman ◽  
Brian Hutton ◽  
...  

Introduction: Large B-cell lymphoma (LBCL) is the most common subtype of non-Hodgkin lymphoma. Frontline treatment is curative in ~60% of patients (pts); however, ~30% of pts relapse and ~10% are refractory to frontline treatment. Treatment options for pts with relapsed/refractory (R/R) disease, especially in the third-line or greater (3L+) setting, have been primarily salvage chemotherapies (CTs). Recently, 2 CAR T cell products, axicabtagene ciloleucel (Yescarta®) and tisagenlecleucel (Kymriah®), and the antibody-drug conjugate, polatuzumab vedotin (Polivy®), were approved in the 3L setting. A systematic literature review (SLR) of R/R LBCL was conducted to identify relevant evidence on clinical outcomes in LBCL pts, including these new therapies, within the second-line and greater (2L+) or 3L+ setting, and to define the unmet medical need. Methods: This SLR was conducted in accordance with the Cochrane Handbook for Systematic Reviews of Interventions and European Union Health Technology Assessment requirements. The review identified randomized and nonrandomized/observational studies within R/R LBCL, including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma grade 3B (FL3B), primary mediastinal large B-cell lymphoma (PMBCL), DLBCL transformed from indolent lymphomas, and R/R DLBCL with secondary central nervous system (SCNS) involvement. Sources were EMBASE, MEDLINE, The Cochrane Library, and clinical conferences (ASCO, ESMO, EHA, ASH, ICML, AACR, and EORTC) from Jan 2000 to Apr 2019. Results : Following screening of 8683 database records and additional sources, 103 publications covering 78 unique studies were identified. Studies identified were characterized by line of treatment and R/R LBCL subtype (Figure). OS, PFS, DOR, OR, and safety observed from the identified studies were described. Disease subtypes, pt eligibility criteria, and length of follow-up varied notably across studies. In the 3L+ population, 11 salvage CT and 2 CAR T cell therapy studies reported survival outcomes. With salvage CT, the reported ORR across studies ranged from 0% to 54%, while CR ranged from 5.6%-31%. Median OS (mOS) ranged between 3-9 months, with one outlying study reporting mOS at 20 months. Median PFS (mPFS) reported within the salvage CT studies ranged from 2-6 months. Among CAR T cell therapies, pts treated with axicabtagene ciloleucel (n=101) reported a CR rate of 58% and median DOR (mDOR) was 11.1 months after a median follow-up of 27.1 months. mPFS was 5.9 months and mOS was not reached. At a median follow-up of 19.3 months, pts treated with tisagenlecleucel (n=115) had a CR of 40% but the mDOR was not reached. mOS was 11.1 months for all infused patients. In the 2L+ transplant-eligible population (36 studies), pts who received high-dose CT + HSCT achieved mOS between 9 months to 5 years. In the transplant noneligible population, 16 studies reported mOS between 3-20 months. Studies involving mixed transplant-eligible and noneligible populations (30 studies) reported mOS of 1-17 months. A few studies with limited sample sizes were found to report outcomes in LBCL subtypes (eg, PMBCL, SCNS lymphoma, DLBCL transformed from non-FL indolent lymphoma, FL3B). In the 3L+ setting, 1 study reported that mOS was not reached after a median of 6.6 months. In the 2L+ setting, 4 studies reported mPFS and mOS outcomes ranging between 2-9 months and 10-16 months, respectively. Among studies assessing safety of salvage CTs in R/R LBCL, neutropenia, leukocytopenia, thrombocytopenia, and infections were the most commonly reported adverse events (AEs), with neutropenia being the most reported. Among the 3 studies reporting safety outcomes of CAR T cell therapy, data suggest that hematologic AEs (possibly related to lymphodepleting CT), cytokine release syndrome, and neurotoxicity are the most reported. Conclusions : Despite the availability of new therapies for 2L+ and 3L + LBCL, examination of the current evidence has shown that there exists a high unmet need for additional therapeutic options that provide favorable benefit/risk and durable response for these patients. Furthermore, limited data are available for the rarer subtypes of LBCL. Both findings represent important treatment gaps for R/R LBCL that must be addressed in future research geared toward improvement of the current treatment landscape. Disclosures Maloney: Juno Therapeutics: Honoraria, Patents & Royalties: patients pending , Research Funding; Celgene,Kite Pharma: Honoraria, Research Funding; BioLine RX, Gilead,Genentech,Novartis: Honoraria; A2 Biotherapeutics: Honoraria, Other: Stock options . Liu:Celgene Corporation: Employment. Nientker:Celgene Corporation: Consultancy; Pharmerit Cöoperatief U.A.: Employment. Alleman:Pharmerit Cöoperatief U.A.: Employment; Celgene Corporation: Consultancy. Garcia:Celgene: Employment, Equity Ownership.


2020 ◽  
Vol 4 (13) ◽  
pp. 3024-3033 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Martina Pennisi ◽  
Marta Garcia-Recio ◽  
Jessica R. Flynn ◽  
Aishat Afuye ◽  
...  

Abstract Cytokine release syndrome (CRS) immune effector cell–associated neurotoxicity syndrome are the most notable toxicities of CD19 chimeric antigen receptor (CAR) T-cell therapy. In addition, CAR T-cell–mediated toxicities can involve any organ system, with varied impacts on outcomes, depending on patient factors and involved organs. We performed detailed analysis of organ-specific toxicities and their association with outcomes in 60 patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 CAR T cells by assessing all toxicities in organ-based groups during the first year posttreatment. We observed 539 grade ≥2 and 289 grade ≥3 toxicities. Common grade ≥3 toxicities included hematological, metabolic, infectious, and neurological complications, with corresponding 1-year cumulative incidence of 57.7%, 54.8%, 35.4%, and 18.3%, respectively. Patients with impaired performance status had a higher risk of grade ≥3 metabolic complications, whereas elevated lactate dehydrogenase was associated with higher risks of grade ≥3 neurological and pulmonary toxicities. CRS was associated with higher incidence of grade ≥3 metabolic, pulmonary, and neurologic complications. The 1-year nonrelapse mortality and overall survival were 1.7% and 69%, respectively. Only grade ≥3 pulmonary toxicities were associated with an increased mortality risk. In summary, toxicity burdens after CD19 CAR T-cell therapy were high and varied by organ systems. Most toxicities were manageable and were rarely associated with mortality. Our study emphasizes the importance of toxicity assessment, which could serve as a benchmark for further research to reduce symptom burdens and improve tolerability in patients treated with CAR T cells.


Blood ◽  
2020 ◽  
Author(s):  
Jordan Gauthier ◽  
Evandro D. Bezerra ◽  
Alexandre V. Hirayama ◽  
Salvatore Fiorenza ◽  
Alyssa Sheih ◽  
...  

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (ALL, n=14; CLL, n=9; NHL, n=21) who received CART2 on a phase 1/2 trial at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 CRS, 9%; grade ≥3 neurotoxicity, 11%). After CART2, CR was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before CART1 and an increase in the CART2 dose compared to CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received Cy-Flu lymphodepletion before CART1 and a higher CART2 compared to CART1 cell dose. The identification of two modifiable pre-treatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4840-4840
Author(s):  
Ioannis Baltadakis ◽  
Despina Mallouri ◽  
Ioannis Tsonis ◽  
Eleni Gavriilaki ◽  
Maria Bouzani ◽  
...  

Abstract Introduction: Immunotherapy with Chimeric Antigen Receptor T cells (CAR-Τ) is a promising innovative treatment for refractory B cell malignancies offering a considerable chance for long-term survival in patients (pts) with an otherwise dismal prognosis. Since January 2020, two anti-CD19 CAR T cell products have been introduced into clinical practice in Greece: a) tisagenlecleucel (Kymriah) for adults with relapsed/refractory diffuse large B-cell Lymphoma (r/r DLBCL) including transformed follicular lymphoma (TFL), as well as for children or young adults with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL), and b) axicabtagene ciloleucel (Yescarta) for adults with r/r DLBCL including TFL and primary mediastinal B-cell lymphoma (PMBCL). The aim of this study was to present the real-world experience of the initial application of CAR T cell therapy in adult pts in Greece, with special focus on early toxicity and disease outcomes. Methods: Data from all consecutive pts were collected from the two transplant centers which were initially accredited for CAR T cell therapies in adult pts: Evangelismos Hospital, Athens and George Papanicolaou Hospital, Thessaloniki. Between November 2019 and July 2021, 51 pts were referred for CAR T cell treatment. In 41 pts lymphocyte collection was performed and product manufacturing was successfully completed in 35; in 2 pts insufficient cell expansion was noted and in 4 manufacturing was terminated due to disease progression and patient death. Results: From January 2020 until July 2021, CAR T cells were infused in 27 pts; 3 pts could not receive the product due to clinical deterioration/death and 5 pts are presently being scheduled for infusion. Of the 27 treated pts, 16 received tisagenlecleucel and 11 axicabtagene ciloleucel. The median age of infused pts was 49 (18-69) years. Diagnosis was DLBCL (n=16), PMBCL (n=3), TFL (n=2), B-ALL (n=6), and the median number of previous lines of treatment was 4 (2-5). Five pts with lymphoma had undergone autologous, and 4 pts with B-ALL allogeneic stem cell transplantation. In total 18/27 pts received bridging therapy, including radiotherapy (n=5), chemoimmunotherapy (n=9), steroids (n=3), and inotuzumab ozogamicin (n=1). The median time from leukapheresis to product delivery and infusion was 35 (15-81) and 59 (35-152) days, respectively. All pts received lymphodepleting therapy before CAR T cell infusion with combination of cyclophosphamide and fludarabine. For patient monitoring, prophylactic therapy and management of toxicity, the EBMT (Yakoub-Agha I, et al. Haematologica 2020) and MD Anderson (Neelapu S, et al. Nat Rev Clin Oncol 2018) guidelines were adopted. Twenty-six pts developed neutropenia (grade II: 2, grade IV: 24) and 20 thrombocytopenia (grade I: 7, grade II: 3, grade III: 1, grade IV: 9), with a median duration of 11 (4-132) and 20 (3-150) days, respectively. Cytokine release syndrome (CRS) and neurotoxicity (ICANS) were noted in 21 (grade I: 8, grade II: 7, grade III: 6) and 5 (grade I: 3, grade III: 2) pts, respectively. Tocilizumab was administered for CRS according to guidelines, and steroids were additionally required for CRS and/or ICANS in 12 pts. In 2 pts, persistent ICANS necessitated further treatment with anakinra (n=2), siltuximab (n=1), and cyclophosphamide (n=1). Hypogammaglobulinemia was encountered in 14/27 pts. With a median follow-up of 7.3 (1-17) months, overall response rate was 48% with 12 (45%) pts being currently in complete remission (CR). No treatment related mortality was observed. Disease-free (DFS) and overall survival (OS) were 52% and 85.3% at 1-year, respectively. DFS and OS were significantly associated with baseline LDH levels (p=0.017 and 0.050, respectively) and grade II/III CRS (p=0.041 and 0.015, respectively, Figure). Conclusions: Despite the limited experience in the real-world setting, CAR T cell therapy can be administered safely and may successfully rescue patients with DLBCL or B-ALL who lack alternative treatment options. Close monitoring of patients and prompt recognition and management of side effects are mandatory for achieving the benefits of therapy. Figure 1 Figure 1. Disclosures Baltadakis: WinMedica: Other: Travel Grants; Gilead: Other: Travel Grants; Genesis Pharma: Other: Travel Grants; Abbvie: Honoraria; Novartis: Honoraria; Gilead: Honoraria; Pfizer: Honoraria, Other: Travel Grants; Astellas: Honoraria; Alexion: Honoraria; Bristol-Myers Squibb: Honoraria; Amgen: Honoraria; Baxalta Hellas: Other: Travel Grants. Gavriilaki: Pfizer Corporation: Research Funding; Gilead Corporation: Honoraria; Alexion, Omeros, Sanofi Corporation: Consultancy. Tzannou: Allovir: Current equity holder in publicly-traded company; Gileas: Honoraria. Anagnostopoulos: Abbvie: Other: clinical trials; Sanofi: Other: clinical trials ; Ocopeptides: Other: clinical trials ; GSK: Other: clinical trials; Incyte: Other: clinical trials ; Takeda: Other: clinical trials ; Amgen: Other: clinical trials ; Janssen: Other: clinical trials; novartis: Other: clinical trials; Celgene: Other: clinical trials; Roche: Other: clinical trials; Astellas: Other: clinical trials .


Sign in / Sign up

Export Citation Format

Share Document