scholarly journals Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Vasily Kravtsov ◽  
Ekaterina Khestanova ◽  
Fedor A. Benimetskiy ◽  
Tatiana Ivanova ◽  
Anton K. Samusev ◽  
...  

Abstract Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe2 to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector, in combination with effective reduction of the excitonic disorder through motional narrowing, results in small polariton linewidths below 3 meV. Together with a strongly wavevector-dependent Q-factor, this provides for the enhancement and control of polariton–polariton interactions and the resulting nonlinear optical effects, paving the way toward tuneable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics.

2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Optik ◽  
2021 ◽  
pp. 167449
Author(s):  
Suxia Xie ◽  
Song Xie ◽  
Zhijian Li ◽  
Zhuoling Li ◽  
Guang Tian ◽  
...  

2009 ◽  
Vol 23 (27) ◽  
pp. 5191-5236 ◽  
Author(s):  
SERGEI V. SHABANOV

Scattering of light on periodic subwavelength arrays is studied in the framework of the resonant scattering theory. With various examples of periodic structures it is demonstrated that: (i) an enhanced reflectance or transmittance is associated with the existence of trapped modes (quasi-stationary modes of light confined in the vicinity of the scattering structure); (ii) scattering structures may have trapped modes due to peculiarities their geometry (geometrical modes) and the dispersive properties of their material (material modes); a practical criterion based on the scaling symmetry of Maxwell's equations is proposed to distinguish them; (iii) the trapped mode field can be significantly amplified, as compared to the incident wave amplitude, in some regions of the structure; (iv) the amplification increases with increasing the lifetime of the trapped mode; (v) this effect can be used to enhance nonlinear optical effects (a resonant higher harmonic generation is studied in detail as an example). The theory of coupled resonances is developed and used to prove that there exist bound states of light in the radiation continuum (resonances with the vanishing width) in periodic arrays. The bound states are neither modes in metal cavities nor modes in photonic crystal defects. Structures supporting the bound states of light can be used to enhance and control nonlinear optical effects in subwavelength periodic arrays.


Sign in / Sign up

Export Citation Format

Share Document