scholarly journals Self-cleaning semiconductor heterojunction substrate: ultrasensitive detection and photocatalytic degradation of organic pollutants for environmental remediation

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mingyue Hu ◽  
Yingnan Quan ◽  
Shuo Yang ◽  
Rui Su ◽  
Huilian Liu ◽  
...  

AbstractEmerging technologies in the field of environmental remediation are becoming increasingly significant owing to the increasing demand for eliminating significant amounts of pollution in water, soil, and air. We designed and synthesized MoS2/Fe2O3 heterojunction nanocomposites (NCs) as multifunctional materials that are easily separated and reused. The trace detection performance of the prepared sample was examined using bisphenol A (BPA) as the probe molecule, with limits of detection as low as 10−9 M; this detection limit is the lowest among all reported semiconductor substrates. BPA was subjected to rapid photocatalytic degradation by MoS2/Fe2O3 NCs under ultraviolet irradiation. The highly recyclable MoS2/Fe2O3 NCs exhibited photo-Fenton catalytic activity for BPA and good detection ability when reused as a surface-enhanced Raman scattering (SERS) substrate after catalysis. The SERS and photocatalysis mechanisms were proposed while considering the effects of the Z-scheme charge-transfer paths, three-dimensional flower-like structures, and dipole–dipole coupling. Moreover, the prepared MoS2/Fe2O3 NCs were successfully applied in the detection of BPA in real lake water and milk samples. Herein, we present insights into the development of MoS2/Fe2O3 materials, which can be used as multifunctional materials in chemical sensors and in photocatalytic wastewater treatments for the removal of recalcitrant organic pollutants.

RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21771-21776 ◽  
Author(s):  
Nan Zhao ◽  
Hefu Li ◽  
Cunwei Tian ◽  
Yanru Xie ◽  
Zhenbao Feng ◽  
...  

Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates.


2015 ◽  
Vol 3 (25) ◽  
pp. 13556-13562 ◽  
Author(s):  
Wei Song ◽  
Wei Ji ◽  
Sanpon Vantasin ◽  
Ichiro Tanabe ◽  
Bing Zhao ◽  
...  

We have described a simple electrospinning technique combined with a calcination process to fabricate ZnO nanofibers deposited on a silver foil surface. These can be used as a photocatalyst and a SERS substrate for monitoring the catalytic degradation process of organic pollutants.


2021 ◽  
Author(s):  
Yang Tian ◽  
Yan Zhou ◽  
Qingyi Gu ◽  
Tianzhu Qiu ◽  
Xiao He ◽  
...  

Abstract Surface enhanced Raman scattering (SERS) based on chemical mechanism (CM) has attracted tremendous attention for its great selectivity and stability. However, extremely low enhancement factor (EF) limits its practical applications for trace detection. Here, a novel sponge-like Cu-doping SnO2-NiO p-n semiconductor heterostructure (SnO2-NiOx/Cu), was first designed and created as a CM-based SERS substrate with a significant EF of 1.66 × 1010. This remarkable EF was mainly attributed to the enhanced charge-separation efficacy of p-n heterojunction and charge transfer resonance resulted from Cu doping. Moreover, the porous sponge structure enriched the probe molecules, resulting in further SERS signals magnification. By immobilizing copper phthalocyanine as an inner-reference element, SnO2-NiOx/Cu was developed as a SERS nose for selective recognition of multiple lung cancer related-volatile organic compounds (VOCs) down to ppb level. The information of VOCs was recorded in a barcode, demonstrating practical potential of a desktop SERS device for biomarker screening.


NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750052 ◽  
Author(s):  
Xiuhua Li ◽  
Jian Lin ◽  
Junhong Zhao

A novel composite nanostructure which is made up of TiO2 three dimensionally ordered macroporous (3DOM) nanostructure and TiO2 nanorods (NRs) has been successfully synthesized through a combination of colloidal crystal template technology and hydrothermal method, then we achieved its combination with Ag nanoparticles (NPs) via a silver mirror reaction. We studied the SERS (Surface-Enhanced Raman Scattering) performance of the obtained structure, the results show that our samples are very sensitive substrates when being used to detect dye R6G molecules, with a low detection concentration of 10[Formula: see text] M. This proves that it is a promising material in the area of analyzing and molecule-level detecting as a kind of novel and low-cost SERS substrate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2209
Author(s):  
Fengyan Wang ◽  
Daxue Du ◽  
Shan Liu ◽  
Linna Wang ◽  
Tifeng Jiao ◽  
...  

Many studies widely used SiO2@Ag composite nanospheres for surface enhanced Raman scattering (SERS), which mainly contributes to electromagnetic enhancement. In addition to experiments, previous simulations mostly adopted a two-dimensional model in SERS research, resulting in the three-dimensional information being folded and masked. In this paper, we adopted the three-dimensional model to simulate the electric field distribution of SiO2@Ag composite nanospheres. It is found that when the Ag nanoparticles are distributed densely on the surface of SiO2 nanospheres, light cannot pass through the upper hemisphere due to the local surface plasmon resonance (LSPR) of the Ag nanoparticles, resulting in the upper hemisphere shielding effect; and if there are no Ag nanoparticles distributed densely on the surface of SiO2 nanospheres, the strong LSPR cannot be formed, so the incident light will be guided downward through the whispering gallery mode of the spherical structure. At the same time, we designed relevant experiments to synthesize SiO2@Ag composite nanosphere as SERS substrate and used Rhodamine 6G as a probe molecule to study its SERS performance. This design achieved a significant SERS effect, and is very consistent with our simulation results.


2022 ◽  
Author(s):  
Sha Li ◽  
Zezhou Wang ◽  
Yunpeng Shao ◽  
Kai Zhang ◽  
Linyu Mei ◽  
...  

In this paper, a highly active surface enhanced Raman scattering (SERS) substrate based on three-dimensional (3D) dendritic silver nanostructure was constructed in microfluidic channel by one-step electrodisplacement reaction for in-situ...


2021 ◽  
Vol 22 (5) ◽  
pp. 2543
Author(s):  
Bomi Seong ◽  
Sungje Bock ◽  
Eunil Hahm ◽  
Kim-Hung Huynh ◽  
Jaehi Kim ◽  
...  

In this study, dense gold-assembled SiO2 nanostructure (SiO2@Au) was successfully developed using the Au seed-mediated growth. First, SiO2 (150 nm) was prepared, modified by amino groups, and incubated by gold nanoparticles (ca. 3 nm Au metal nanoparticles (NPs)) to immobilize Au NPs to SiO2 surface. Then, Au NPs were grown on the prepared SiO2@Au seed by reducing chloroauric acid (HAuCl4) by ascorbic acid (AA) in the presence of polyvinylpyrrolidone (PVP). The presence of bigger (ca. 20 nm) Au NPs on the SiO2 surface was confirmed by transmittance electronic microscopy (TEM) images, color changes to dark blue, and UV-vis spectra broadening in the range of 450 to 750 nm. The SiO2@Au nanostructure showed several advantages compared to the hydrofluoric acid (HF)-treated SiO2@Au, such as easy separation, surface modification stability by 11-mercaptopundecanoic acid (R-COOH), 11-mercapto-1-undecanol (R-OH), and 1-undecanethiol (R-CH3), and a better peroxidase-like catalysis activity for 5,5′-Tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) reaction. The catalytic activity of SiO2@Au was two times better than that of HF-treated SiO2@Au. When SiO2@Au nanostructure was used as a surface enhanced Raman scattering (SERS) substrate, the signal of 4-aminophenol (4-ATP) on the surface of SiO2@Au was also stronger than that of HF-treated SiO2@Au. This study provides a potential method for nanoparticle preparation which can be replaced for Au NPs in further research and development.


The Analyst ◽  
2021 ◽  
Author(s):  
Yanjia Jiang ◽  
Huimin Sun ◽  
Chenjie Gu ◽  
Yongling Zhang ◽  
Tao Jiang

There is a growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge of the pretreatment-free detection and degradation of hazardous molecules in organic...


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Li Yuan ◽  
Jinghuai Fang ◽  
Yonglong Jin ◽  
Chaonan Wang ◽  
Tian Xu

We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition,Staphylococcus aureuscells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.


Sign in / Sign up

Export Citation Format

Share Document