scholarly journals A novel and effective approach to generate germline-like monoclonal antibodies by integration of phage and mammalian cell display platforms

Author(s):  
Yu-jia Jin ◽  
Diao Yu ◽  
Xiao-long Tian ◽  
Hui-xian Li ◽  
Xiao-chao Zhou ◽  
...  

AbstractPhage display technology allows for rapid selection of antibodies from the large repertoire of human antibody fragments displayed on phages. However, antibody fragments should be converted to IgG for biological characterizations and affinity of antibodies obtained from phage display library is frequently not sufficient for efficient use in clinical settings. Here, we describe a new approach that combines phage and mammalian cell display, enabling simultaneous affinity screening of full-length IgG antibodies. Using this strategy, we successfully obtained a novel germline-like anti-TIM-3 monoclonal antibody named m101, which was revealed to be a potent anti-TIM-3 therapeutic monoclonal antibody via in vitro and in vivo experiments, indicating its effectiveness and power. Thus, this platform can help develop new monoclonal antibody therapeutics with high affinity and low immunogenicity.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2349-2349
Author(s):  
Gadi Gazit Bornstein ◽  
Christophe Queva ◽  
Mohammad Tabrizi ◽  
Anne VanAbbema ◽  
Carlos Chavez ◽  
...  

Abstract In spite of the widespread use of Rituximab, a chimeric monoclonal antibody with demonstrated efficacy in the treatment of non-Hodgkin’s lymphomas, there is a recognized need to develop fully human antibodies with improved efficacy. Towards this end, using XenoMouse™ technology, a fully human IgG1 monoclonal antibody specific to human CD20 was generated. This antibody, denoted mAb 1.5.3, evoked enhanced pro-apoptotic activity in vitro, as compared to Rituximab, in the Ramos human lymphoma cell line. In addition, mAb 1.5.3 was active in mediating complement dependent cytotoxicity (CDC) and elicited improved antibody-dependent cellular cytotoxicity (ADCC) relative to Rituximab in Ramos, Raji, and Daudi human B-lymphoma lines. To recapitulate various aspects of acquired resistance to Rituximab, as observed in a subpopulation of patients, Rituximab-resistant clones were established from lymphoma lines. Interestingly, mAb 1.5.3 demonstrated superior cytolytic activity against engineered Rituximab-refractory lymphoma clones, as well as across multiple human B-lymphoma and chronic B-cell leukemia lines in an in vitro whole blood assay. Furthermore, mAb 1.5.3 exhibited enhanced anti-tumor activity in Rituximab-sensitive cell lines and -refractory engineered lymphoma clones in vivo. Lastly, mAb 1.5.3 produced a superior B-cell depletion profile in lymph node organs and bone marrow as compared to Rituximab in a primate PD model. In contrast to Rituximab, mAb 1.5.3 is a fully human antibody and is thus anticipated to exhibit a longer serum half-life with minimal immunogenicity following repeated administration. In sum, these results demonstrate the superior anti-tumor activity of mAb 1.5.3 relative to Rituximab and its potential for improved clinical activity in the treatment of B-cell malignancies.


2014 ◽  
Vol 426 (21) ◽  
pp. 3606-3618 ◽  
Author(s):  
Alessia Putelli ◽  
Jonathan D. Kiefer ◽  
Matthias Zadory ◽  
Mattia Matasci ◽  
Dario Neri

2009 ◽  
Vol 14 (8) ◽  
pp. 991-998 ◽  
Author(s):  
Rui Yu ◽  
Shuang Wang ◽  
Yun-zhou Yu ◽  
Wei-shi Du ◽  
Fang Yang ◽  
...  

The botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous protein substances known. The neutralizing antibodies against botulinum neurotoxin can effectively prevent and cure the toxicosis. Using purified Hc fragments of botulinum neurotoxin serotype A (BoNT/A-Hc) as antigen, 2 specific neutralizing antibodies mapping different epitopes were selected from a fully synthetic human antibody library. The 2 antibodies can effectively inhibit the binding between BoNT/A-Hc and differentiated PC-12 cells in vitro, and the neutralization was evaluated in vivo. Although no single mAb completely protected mice from toxin, they both could prolong time to death when challenged with 20 LD 50s (50% lethal doses) of BoNT/A. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, suggesting their high neutralizing potency in vivo . The results would lead to further production of neutralizing antibody drugs against BoNT/A. It also proved that it was a quick method to obtain human therapeutic antibodies by selecting from the fully synthetic human antibody phage display library. ( Journal of Biomolecular Screening 2009:991-998)


Author(s):  
Xia Cao ◽  
Junki Maruyama ◽  
Heyue Zhou ◽  
Lisa Kerwin ◽  
Rachel Sattler ◽  
...  

ABSTRACTSARS-CoV-2 neutralizing antibodies represent an important component of the ongoing search for effective treatment of and protection against COVID-19. We report here on the use of a naïve phage display antibody library to identify a panel of fully human SARS-CoV-2 neutralizing antibodies. Following functional profiling in vitro against an early pandemic isolate as well as a recently emerged isolate bearing the D614G Spike mutation, the clinical candidate antibody, STI-1499, and the affinity-engineered variant, STI-2020, were evaluated for in vivo efficacy in the Syrian golden hamster model of COVID-19. Both antibodies demonstrated potent protection against the pathogenic effects of the disease and a dose-dependent reduction of virus load in the lungs, reaching undetectable levels following a single dose of 500 micrograms of STI-2020. These data support continued development of these antibodies as therapeutics against COVID-19 and future use of this approach to address novel emerging pandemic disease threats.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1499-1499
Author(s):  
Kerstin Brettschneider ◽  
Anja Naumann ◽  
Sonja Neimanis ◽  
Joerg Kahle ◽  
Christine Heller ◽  
...  

Abstract The development of inhibitory antibodies against coagulation factor VIII (FVIII) is currently the most serious complication for hemophilia A patients that undergo FVIII replacement therapy. In addition, non-hemophilia A patients can spontaneously develop inhibitory auto-antibodies to FVIII, which results in acquired haemophilia A. The control of the allo- or autoimmune response to FVIII apparently includes the elicitation of anti-idiotypic antibodies. In this study the capacity of anti-idiotypic single-chain variable antibody fragments (scFvs) for neutralization of inhibitory anti-FVIII antibodies (FVIII inhibitors) was evaluated in vitro and in vivo. Anti-idiotypic scFvs were selected from phage-displayed libraries against murine monoclonal FVIII-specific inhibitors. As the majority of inhibitory antibodies is directed against the A2 or C2 domain of FVIII, strongly inhibitory A2- and C2-specific antibodies served as targets. Selected scFvs were expressed as scFv-Fc fusion proteins. Analysis of the scFv-Fcs by ELISA confirmed the specific binding to the cognate targets and binding studies via surface plasmon resonance revealed high affinities within the nanomolar range. Further characterization showed that binding of inhibitors to immobilized FVIII was blocked by specific scFv-Fcs in vitro. The ability of scFv-Fcs to neutralize their corresponding inhibitors was analyzed in a functional clotting assay. By adding scFv-Fcs to plasma spiked with inhibitors, FVIII activity was restored to 80% in a concentration dependent manner. FVIII knockout mice served as model organism for testing the capacity of scFv-Fcs to restore coagulation in vivo. Subsequent injection of FVIII following the injection of the inhibitors resulted in a largely reduced FVIII activity. However, FVIII activity was recovered in a concentration dependent manner by adding cognate anti-idiotypes. The scFv-Fcs were either preincubated with the corresponding inhibitor or added to the FVIII mixture without preincubation. The latter represents an adaption to a therapeutic setting. In conclusion, phage display selected anti-idiotypic scFvs are able to bind and effectively neutralize their target inhibitors in vitro and in vivo. Based on these promising results the potential of anti-idiotypic scFvs for the development of specific cell based immunotherapies for hemophilia A patients with inhibitors is currently under investigation. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 8106-8106 ◽  
Author(s):  
M. Tesar

8106 MOR202 is one of MorphoSys’ internal development programs targeting the cell surface antigen CD38 that is found to be expressed on various cell lines derived from B cell, T cell, and myeloid/monocytic tumors. Especially in the indication of multiple myeloma (MM), which remains an incurable malignancy with a median survival of 3–4 years, a strong expression has been reported in the majority of patients’ tumor samples. CD38-specific human antibodies were selected from MorphoSys’ proprietary HuCAL GOLD phage display library by cell panning strategies. A lead candidate (MOR202) was selected from several antibodies recognizing different epitopes on CD38 and subjected to further in vitro and in vivo characterization as follows: MOR202 exhibits an affinity in the low nanomolar range, recognizes CD38 on many cell lines of different cancer origin and most importantly on all primary MM-patient samples in FACS and IHC. The fully human IgG1 MOR202 is able to kill CD38-expressing cell lines and primary MM cells from patients efficiently by ADCC in a concentration-dependent manner, whereas early progenitor cells are not affected as demonstrated by a clonogenic assay. Finally, excellent efficacy could be shown in a SCID-mouse xenograft model, resulting in significantly reduced tumour growth (RPMI8226) and overall survival, which was even superior to bortezomib tested in the same model. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document