Development of a New Fully Human Anti-CD20 Monoclonal Antibody for the Treatment of B-Cell Malignancies.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2349-2349
Author(s):  
Gadi Gazit Bornstein ◽  
Christophe Queva ◽  
Mohammad Tabrizi ◽  
Anne VanAbbema ◽  
Carlos Chavez ◽  
...  

Abstract In spite of the widespread use of Rituximab, a chimeric monoclonal antibody with demonstrated efficacy in the treatment of non-Hodgkin’s lymphomas, there is a recognized need to develop fully human antibodies with improved efficacy. Towards this end, using XenoMouse™ technology, a fully human IgG1 monoclonal antibody specific to human CD20 was generated. This antibody, denoted mAb 1.5.3, evoked enhanced pro-apoptotic activity in vitro, as compared to Rituximab, in the Ramos human lymphoma cell line. In addition, mAb 1.5.3 was active in mediating complement dependent cytotoxicity (CDC) and elicited improved antibody-dependent cellular cytotoxicity (ADCC) relative to Rituximab in Ramos, Raji, and Daudi human B-lymphoma lines. To recapitulate various aspects of acquired resistance to Rituximab, as observed in a subpopulation of patients, Rituximab-resistant clones were established from lymphoma lines. Interestingly, mAb 1.5.3 demonstrated superior cytolytic activity against engineered Rituximab-refractory lymphoma clones, as well as across multiple human B-lymphoma and chronic B-cell leukemia lines in an in vitro whole blood assay. Furthermore, mAb 1.5.3 exhibited enhanced anti-tumor activity in Rituximab-sensitive cell lines and -refractory engineered lymphoma clones in vivo. Lastly, mAb 1.5.3 produced a superior B-cell depletion profile in lymph node organs and bone marrow as compared to Rituximab in a primate PD model. In contrast to Rituximab, mAb 1.5.3 is a fully human antibody and is thus anticipated to exhibit a longer serum half-life with minimal immunogenicity following repeated administration. In sum, these results demonstrate the superior anti-tumor activity of mAb 1.5.3 relative to Rituximab and its potential for improved clinical activity in the treatment of B-cell malignancies.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3063-3063
Author(s):  
C. Cerveny ◽  
L. Grosmaire ◽  
E. Espling ◽  
R. Bader ◽  
C. Nilsson ◽  
...  

3063 Background: CD37 is a member of the tetraspanin family expressed at high levels by normal mature B cells and by most B cell malignancies. Previously, an antibody to CD37 has been labeled with 131I and tested in clinical trials for therapy of NHL. Treatment with 131I-MB-1, resulted in durable tumor remissions in patients lasting from 4 to 11 months (Press OW, Eary JF, Badger CC, et al. Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol. 1989;7:1027–1038). Here we assess the functional properties and therapeutic potential of a small modular immunopharmaceutical (SMIP) targeting CD37. Methods: Growth arrest and apoptosis of B lymphoma cell lines was assessed. ADCC activity was evaluated using BJAB targets and human peripheral blood mononuclear cells (PBMC) effectors. Drug-drug interactions were assessed by the Combination Index method. In vivo studies were performed utilizing established human B cell tumor xenografts in nude mice. Results: A CD37-directed SMIP drug candidate mediated growth arrest, apoptosis and ADCC, but not CDC, towards B lymphoma cell lines. The protein showed significant anti-tumor activity in a mouse xenograft model, and selectively depleted normal human B cells in short term cultures of PBMC. When combined with rituximab, the molecule increased apoptosis, C1q binding, and C’ dependent target cell death in vitro, and increased anti-tumor activity in vivo in a xenograft model. Conclusions: In vitro and in vivo characterization of the CD37-targeted SMIP drug suggest a potent capacity to eliminate target cells through combined effects of direct target cell signaling and effector cell recruitment. CD37-mediated growth was synergistic with standard chemotherapies in vitro and showed additive in vivo activity with CD20-targeted therapy. On the basis of these data CD37-directed SMIP therapy is being developed for clinical evaluation against B cell malignancies. No significant financial relationships to disclose.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3281-3281 ◽  
Author(s):  
Li Long ◽  
Xia Tong ◽  
Montesa Patawaran ◽  
Lea Aukerman ◽  
Julie Klinger ◽  
...  

Abstract CD40 and CD20 are expressed in several B-cell malignancies and represent attractive targets for therapeutic intervention. The anti-CD20 monoclonal antibody, rituximab, is an approved drug for the treatment of non-Hodgkin’s lymphomas. however, the existence of patients with rituximab-resistant disease limits its clinical utility. We have previously reported that the novel, highly potent, fully human antagonistic anti-CD40 monoclonal antibody, CHIR-12.12, generated from XenoMouse® mice (Abgenix, Inc) has greater anti-tumor activity than rituximab in both rituximab-responsive and rituximab-resistant human NHL models. In this study, we evaluated the potential therapeutic application of combining CHIR-12.12 and rituximab for the treatment of NHL. Namalwa is a Burkitt’s lymphoma cell line that gives rise to aggressive rituximab-resistant tumors when implanted in nude mice. Direct treatment of these tumor cells with CHIR-12.12 or rituximab in culture does not affect cell growth when compared to treatment with an isotype control antibody. Although Namalwa cells express more CD20 than CD40 (average of 10,059 CD20 and 3,138 CD40 molecules per cell respectively, P=0.05), when tested for in vitro ADCC killing using human NK cells as effectors, CHIR-12.12 mediated stronger target cell lysis than rituximab (31.43% vs. 14.15%, P<0.0001). Adding CHIR-12.12 and rituximab together did not enhance the in vitro ADCC killing. When CHIR-12.12 and rituximab were tested in a subcutaneous Namalwa xenograft model, CHIR-12.12 alone caused 60% tumor growth inhibition (P=0.028) whereas rituximab alone at 10 and 20 mg/kg did not inhibit Namalwa tumor growth. When tumor-bearing mice were administered rituximab at 10 mg/kg plus CHIR-12.12 at 5 or 10 mg/kg, synergistic anti-tumor activity was observed in a CHIR-12.12 dose-dependent manner. The mean tumor volume reduction in combination groups is 77% with CHIR-12.12 at 5 mg/kg (P=0.0037) and 83% with CHIR-12.12 at 10 mg/kg (P=0.0018), respectively. The potential interaction between CD40 and CD20 molecules was evaluated in vitro by treating the tumor cells with CHIR-12.12 and assessing the change in CD20 expression and vice versa. The result showed no augmentation of one antigen expression by treating the tumor cells with the other antibody. The mechanism of anti-tumor synergy observed in this combination is under evaluation. Taken together, these data suggest that the combination therapy with anti-CD40 CHIR-12.12 and rituximab has the potential to improve patient outcome in B-cell malignancies co-expressing CD20 and CD40 antigens and support the further development of CHIR-12.12 antibody for treatment of B-cell malignancies.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Doris Mangelberger ◽  
Christian Augsberger ◽  
Karin Landgraf ◽  
Christina Heitmüller ◽  
Stefan Steidl

Introduction Tafasitamab (MOR208) is an Fc-enhanced, humanized, monoclonal antibody that targets CD19 and has shown promising clinical activity in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). CD19 is homogeneously expressed among different B-cell malignancies, and the binding of tafasitamab to CD19 directly mediates cell death, induces antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. Aiming to potentiate the tafasitamab-mediated "eat me" signal, we tested a combination with a CD47-directed monoclonal antibody (mAb) to inhibit the CD47/SIRPα "don't eat me" signal and further enhance macrophage-mediated phagocytosis. Preclinical studies demonstrated that blocking the CD47/SIRPα checkpoint in combination with antibodies, such as rituximab, increased phagocytosis by macrophages, resulting in effective anti-tumor effects in non-Hodgkin lymphoma (NHL) (Chao, et al. 2010). Additionally, the combination of the anti-CD47, magrolimab, and the anti-CD20, rituximab, demonstrated beneficial outcomes for patients with refractory NHL (Advani, et al. 2019). Here, we present in vitro and in vivo data on the combinatory effect of tafasitamab and an anti-CD47 mAb in preclinical models of Burkitt's lymphoma (BL). Methods During in vitro studies, CD14+ monocytes were isolated from the whole blood of healthy volunteers and differentiated with 50 ng/mL M-CSF for 6 days. ADCP was analyzed by flow cytometry in co-culture experiments with Ramos cells (BL) after 3 hours of treatment with tafasitamab and anti-CD47 mAb (clone B6H12). In vivo, the combination of tafasitamab with an anti-CD47 mAb was tested in a Ramos disseminated survival and subcutaneous tumor model in SCID and NOD-SCID mice, respectively. In both models, tafasitamab was administered therapeutically twice a week either at 3 mg/kg (disseminated) or 10 mg/kg (subcutaneous) for max. 4 weeks. The anti-CD47 mAb was administered at 4 mg/kg three times per week. Main study readouts were to assess animal survival and any delays in tumor growth. Results The combination of tafasitamab + CD47/SIRPα checkpoint blockade enhanced ADCP activity of primary M2 macrophages on BL-derived Ramos cells, in comparison with the anti-CD47 mAb or tafasitamab monotherapies (Figure 1A). In vivo, a significant increase in anti-tumor activity was observed with the combination of tafasitamab + anti-CD47 mAb. In the Ramos disseminated survival model, the combination showed an increased life span (ILS) of &gt;182% compared with tafasitamab monotherapy control, with an overall survival of all animals treated with the combination (15/15) until the end of the study (Day 99 post-cell injection). Additionally, pronounced anti-tumor efficacies were detected in the Ramos subcutaneous tumor model. Here, the combination resulted in a significant delay in tumor growth compared with the tafasitamab or anti-CD47 mAb monotherapies (ILS &gt;175% tafasitamab and ILS &gt;72% anti-CD47 mAb vs tafasitamab + B6H12) (Figure 1B). Conclusions The ADCP activity of primary macrophages was increased by combining tafasitamab with an anti-CD47 mAb in vitro, resulting in enhanced anti-tumor activity compared with tafasitamab or anti-CD47 mAb monotherapies in vivo. Overall, results indicate the combination of tafasitamab with a CD47/SIRPα checkpoint blockade may be a promising novel combination approach for lymphoma therapy. Disclosures Mangelberger: MorphoSys AG: Current Employment. Augsberger:MorphoSys AG: Current Employment. Landgraf:MorphoSys AG: Current Employment. Heitmüller:MorphoSys AG: Current Employment. Steidl:MorphoSys AG: Current Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2779-2779
Author(s):  
Marina Gergues ◽  
Irene Raitman ◽  
Joseph Gleason ◽  
Valentina Rousseva ◽  
Shuyang He ◽  
...  

Abstract Background: Natural killer (NK) cells exhibit anti-tumor activity in a non-antigen-specific manner without causing graft-versus-host disease. T cell and cord blood NK cells expressing chimeric antigen receptor (CAR) targeting CD19 have demonstrated remarkable clinical efficacies against B cell lymphomas (Maude et al, N Engl J Med 2018; Neelapu et al, N Engl J Med 2017; Liu et al, N Engl J Med 2020). Celularity has developed a platform for the expansion and differentiation of human placental CD34 + stem cells towards NK cells. The introduction of CD19 CAR enables generation of CAR19-CYNK cells that can be used as an off-the-shelf, cryopreserved, allogeneic cell therapy for CD19 + B cell malignancies. Reported here are the in vitro and in vivo results evaluating anti-tumor activity of CAR19-CYNK against CD19 + B cell malignancies. Methods: CAR19-CYNK cells were generated by retroviral transduction of human placental CD34 + cells with an anti-CD19 CAR (CD19scFv-CD28CD3ζ, Sorrento Therapeutics), followed by culture expansion in the presence of cytokines. CD19 CAR expression and phenotype of CAR19-CYNK cells were characterized by flow cytometry using the following surface markers: CD56, CD3, CD226, CD16, CD11a, CD94, NKG2D, NKp30, NKp44, NKp46. The in vitro anti-tumor activity of CAR19-CYNK against the B cell lymphoma cell lines, Daudi and Nalm-6, was assessed at various effector to target (E:T) ratios using a flow cytometry-based cytotoxicity assay and multiplex Luminex analysis for cytokine profiling. Non-transduced (NT) NK cells were used as control. In vivo efficacy of CAR19-CYNK was assessed using a disseminated B-cell lymphoma xenograft model in B-NDG-hIL15 mice. B-NDG-hIL15 mice lack T, B, and NK cells and are transgenic for human IL-15 to support CAR19-CYNK persistence and maturation. Luciferase expressing Daudi cells (3×10 6) were intravenously (IV) injected on Day 0 three days after the mice were preconditioned with a myeloablative dose of busulfan to allow for better tumor cell engraftment. CAR19-CYNK cells (1x10 7) were IV injected on Day 7. Tumor burden was assessed weekly by bioluminescence imaging (BLI) and the mice were followed for assessment of their survival (n=5 mice per group). Results: Placental CD34 + cells were genetically modified using a retroviral vector and achieved an average of 29.2% ± 12.4% (range 17.5% to 50.1%; n=5 donor lots) CD19 CAR expression on CAR19-CYNK cells at the end of 35-day culture. The average fold expansion of CAR19-CYNK was 6186 ± 2847 with the range of 2692 to 10626 (n=5 donor lots). Post-thaw evaluation of CAR19-CYNK (n=5 donor lots) revealed 93.8 ± 3.9% of CD56 +CD3 - NK cells, and transduction of CD19 CAR on CYNK did not significantly alter NK cell phenotype based on various activation and lineage markers (CD226, CD16, CD11a, CD94, NKG2D, NKp30, NKp44, NKp46). CAR19-CYNK displayed enhanced in vitro cytotoxicity against lymphoma cell lines, Daudi and Nalm-6, compared to that of NT NK cells. At the E:T ratio of 10:1, CAR19-CYNK (n=5 donor lots) elicited significant increased cytotoxicity against Nalm-6 compared to that of NT NK cells, with 75.9 ± 14.8% vs. 0.00 ± 0.00% at 24h (p&lt;0.005). Under the same condition, CAR19-CYNK (n=4 donor lots) showed higher cytotoxicity against Daudi compared to that of NT NK cells with 23.6 ± 18.9% vs. 4.9 ± 4.0%. When cocultured with tumor cell lines, CAR19-CYNK showed increased secretion of the proinflammatory cytokines GM-CSF (p&lt;0.05 for both Nalm-6 and Daudi), IFN-g (p&lt;0.05 for Nalm-6), and TNF-a compared to that of NT NK cells at an E:T ratio of 1:1 for 24h. To evaluate the in vivo efficacy of CAR19-CYNK, a disseminated Daudi xenograft B-NDG-hIL15 model was used. CAR19-CYNK treated mice demonstrated a significant survival benefit with a median survival of 39 days versus a median survival of 28 days for the vehicle treated group (p&lt;0.05). Conclusions: In summary, we have successfully established a process for generating CAR19-CYNK cells from human placental CD34 + cells. CAR19-CYNK demonstrated enhanced in vitro cytotoxicity against CD19 + B cell malignancies and in vivo survival benefit in a disseminated lymphoma xenograft B-NDG-hIL15 model. Further development of CAR19-CYNK for CD19 + B cell malignancies is warranted. Disclosures Gergues: Celularity Inc: Current Employment, Current equity holder in publicly-traded company. Raitman: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Gleason: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Rousseva: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. He: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Van Der Touw: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Ye: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Kang: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Zhang: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Pai: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Guo: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Ji: Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Hariri: Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Zhang: Celularity Inc.: Current equity holder in publicly-traded company, Ended employment in the past 24 months.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4169-4169 ◽  
Author(s):  
Daniel W Pierce ◽  
Sabine Ponader ◽  
Kumudha Balakrishnan ◽  
Varsha Gandhi ◽  
William G. Wierda ◽  
...  

Abstract Introduction The B-cell receptor (BCR) and its downstream effectors have emerged as important therapeutic targets in B-cell malignancies. CC-292 is a novel, potent, covalent, and highly selective inhibitor of Btk (IC50apparent of 0.5 nM, kinact/KI ratio of 7.69 × 104 M-1s-1), that does not appreciably inhibit other kinases involved in BCR signaling (eg, IC50 Lyn kinase, 4401 nM) (Evans et al., J Pharmacol Exp Ther. 2013). Here, we report preclinical characterization and clinical data in CLL from a single-agent phase 1 dose-escalation trial of CC-292 in B-cell malignancies, with a focus on how target engagement and downstream events correlate with clinical activity. Results Pharmacodynamic effects of Btk inhibition by CC-292 can be monitored by occupancy of the Btk catalytic site, Btk autophosphorylation on Y223, and downstream phosphorylation of Plc-γ2 and Erk. We developed a sensitive (10 pg/mL lower limit of quantification) and quantitative assay to measure covalent binding of CC-292 to Btk (Evans et al., J Pharmacol Exp Ther. 2013), as well as Western and novel phos-flow assays to probe downstream signal transduction. These methods showed that CC-292 treatment blocks Btk autophosphorylation and downstream pathway activation in both tumor cells and human peripheral blood mononuclear cells (PBMCs). The extent of CC-292 binding to Btk correlated with its in vitro and in vivo effects. The occupancy assay demonstrated that CC-292 effectively targets Btk in tumor cell lines, PBMCs, spleen, and lymph nodes (LNs) in animal models, and in PBMC and lymph node samples from clinical trial subjects. In rats and non-human primates treated with CC-292, Btk occupancy in spleen and LNs was dose-dependent. Measured occupancy in rat spleen and axillary, mesenteric, and superficial cervical LNs was 94%, 92%, 90%, and 76% respectively, 4 hours (hrs) after a single 30-mg/kg dose. Interim data from the phase 1 CLL trial showed that PBMC Btk was completely occupied in the majority of subjects 4 hrs post-dose with both QD and BID dosing. Twenty-four hrs post-dose at 750 and 1000 mg QD, CC-292 exhibited 83% ± 17% Btk occupancy, whereas with BID dosing at 375 and 500 mg, occupancy was 94% ± 16% at the corresponding time point (12 hrs after the second dose). Thus, while both schedules achieved extensive and sustained Btk occupancy, residual free Btk levels were lower with the BID schedule, offering a rationale for an early trend towards more rapid nodal responses, lymphocytosis, and partial responses on the BID schedule observed to date in the phase 1 study. In the 10 clinical LN biopsies tested to date, no measurable levels of unoccupied Btk have been detected, although Btk protein was present as determined by Western blotting, showing that CC-292 was able to penetrate LNs and inhibit Btk in human subjects as it did in preclinical models. For monitoring downstream signal transduction, we developed reagents and assays including a phos-flow assay based on a novel rabbit monoclonal antibody to detect Btk pY223 levels in PBMC subsets. CC-292 effectively inhibited constitutive and induced phosphorylation of Btk and Plc-γ2 at low nanomolar concentrations. CC-292 also inhibited BCR activation and nurse-like cell–supported survival of CLL cells. Furthermore, CC-292 reduced CLL cell migration and actin polymerization in response to chemokines (CXCL12, CXCL13) and inhibited secretion of the chemokines CCL3 and CCL4 by CLL cells. These chemokines are essential for migration and retention of normal and neoplastic B cells in the marrow and secondary lymphatic tissues. Consistent with this preclinical data, CC-292 treatment resulted in rapid reductions in circulating CCL3 and CCL4 levels. In subjects treated at the 750 mg QD, 1000 mg QD, 375 mg BID, and 500 mg BID dose levels, plasma CCL3 was reduced from 99 ± 16 pg/ml before treatment to 28 ± 5 pg/ml (N = 48, mean ± SEM) at 24 hrs after the first dose, while CCL4 was reduced from 235 ± 59 pg/ml to 74 ± 16 pg/ml (N = 51). Conclusions These data demonstrate that CC-292 achieves significant and durable occupancy of Btk in vitro and in vivo, inhibits Btk-mediated downstream signaling events and chemokine production, and that these preclinical activities have translated into the clinic. Taken together, these results argue that Btk inhibition is necessary and sufficient for clinical activity in CLL. These emerging data support continued development of CC-292 for the treatment of B-cell malignancies. Disclosures: Pierce: Celgene: Employment, Equity Ownership. O'Brien:Genentech: Consultancy, Research Funding; Emergent: Consultancy, Research Funding; CLL Global Research Foundation: Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy; Gilead Sciences: Consultancy, Research Funding; Infinity: Consultancy, Research Funding; MorphoSys: Research Funding; Pharmacyclics: Consultancy, Research Funding; Talon: Consultancy, Research Funding; Teva/Cephalon: Consultancy. Heise:Celgene: Employment, Equity Ownership. Nacht:Celgene: Employment, Equity Ownership. Aslanian:Celgene: Employment, Equity Ownership. Liu:Celgene: Employment, Equity Ownership. Hong:Celgene: Employment, Equity Ownership. Wu:Celgene: Employment, Equity Ownership. Zavodovskaya:Celgene: Employment, Equity Ownership. Marine:Celgene: Employment, Equity Ownership. Barnett:Celgene: Employment, Equity Ownership. Nava-Parada:Celgene: Employment, Equity Ownership. Mei:Celgene: Employment, Equity Ownership. Chopra:Celgene: Employment, Equity Ownership. Burger:Pharmacyclics: Research Funding; Gilead: Research Funding. Singh:Celgene: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1564-1564 ◽  
Author(s):  
Francesca Zammarchi ◽  
David G. Williams ◽  
Lauren Adams ◽  
Karin Havenith ◽  
Simon Chivers ◽  
...  

Abstract Human CD19 antigen is a 95 kilodalton type I transmembrane glycoprotein belonging to the immunoglobulin superfamily (Wang, Wei, & Liu, 2012). The role of CD19, both in health and disease, is well studied, and the therapeutic efficacy and safety of CD19 modulation have been well defined over several decades (Scheuermann & Racila, 1995). In normal human tissue, expression of CD19 is limited to the various stages of B-cell development and differentiation (except plasma cells) and its expression is maintained on the majority of B-cell malignancies, including B-cell leukemia and non-Hodgkin lymphomas of B-cell origin. CD19 has rapid internalization kinetics and it is not shed into the circulation (Blanc et al., 2011; Gerber et al., 2009). All these features make CD19 an attractive target for the development of an ADC to treat B-cell malignancies. ADCT-402 is an ADC composed of a humanized antibody directed against human CD19, stochastically conjugated via a valine-alanine cleavable, maleimide linker to a PBD dimer cytotoxin. PBD dimers are highly efficient anticancer drugs that covalently bind in the minor groove of DNA and form cytotoxic DNA interstrand cross-links. The average drug to antibody ratio of ADCT-402 is 2.3 ± 0.3, as shown by hydrophobic interaction chromatography and reverse-phase HPLC. In vitro, ADCT-402 demonstrated potent cytotoxicity in a panel of human-derived cell lines of differing levels of CD19, while its potency was strongly reduced in CD19-negative cell lines. In vivo, ADCT-402 demonstrated dose-dependent anti-tumor activity in a subcutaneously implanted human Burkitt's lymphoma-derived Ramos xenograft model, where a single dose at 0.33 mg/kg induced significantly delayed tumor growth compared to the vehicle-treated mice and at 0.66 mg/kg and 1 mg/kg gave 4/10 and 10/10 tumor-free survivors, respectively. In the same model, ADCT-402 showed remarkably superior anti-tumor activity compared to both maytansinoid- and auristatin-based CD19-targeting ADCs, when they were tested at the same dose and schedule (1 mg/kg, single dose). Moreover, ADCT-402 mediated an impressive increase in survival compared to both vehicle-treated and isotype control ADC-treated mice in the disseminated Ramos xenograft model when tested as a single dose at 0.33 mg/kg or 1 mg/kg. For example, a single dose of ADCT-402 at 1 mg/kg resulted in 10/10 survivors at day 91, while there were 0/10 survivors at day 19 in the group of animals treated with either the vehicle control or with a single dose of the non-binding, control ADC at 1 mg/kg. In rat, a single dose of ADCT-402 at 2 mg/kg was well tolerated with no adverse signs or hematologic effects. Altogether, these data show the potent and specific anti-tumor activity of ADCT-402 against CD19-expressing B-cell malignancies, both in vitro and in vivo, and warrant further development of this ADC into the clinic. Disclosures Zammarchi: ADC Therapeutics: Employment. Williams:Spirogen/Medimmune: Employment. Adams:Spirogen/Medimmune: Employment, Equity Ownership. Havenith:ADC Therapeutics: Employment. Chivers:ADC Therapeutics: Employment. D'Hooge:Spirogen/Medimmune: Employment, Equity Ownership. Howard:ADCT Spirogen/Medimmune: Employment, Equity Ownership, Patents & Royalties. Hartley:ADCT Spirogen/Medimmune: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. van Berkel:ADC Therapeutics: Employment, Equity Ownership, Patents & Royalties.


2017 ◽  
Vol 35 ◽  
pp. 46-47 ◽  
Author(s):  
P. Pérez-Galán ◽  
A. Vidal-Crespo ◽  
A. Matas-Céspedes ◽  
V. Rodriguez ◽  
C. Rossi ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e10941 ◽  
Author(s):  
David M. Lucas ◽  
Lapo Alinari ◽  
Derek A. West ◽  
Melanie E. Davis ◽  
Ryan B. Edwards ◽  
...  

Haematologica ◽  
2019 ◽  
Vol 105 (4) ◽  
pp. 1032-1041 ◽  
Author(s):  
Anna Vidal-Crespo ◽  
Alba Matas-Céspedes ◽  
Vanina Rodriguez ◽  
Cédric Rossi ◽  
Juan G. Valero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document