scholarly journals EBV-LMP1 promotes radioresistance by inducing protective autophagy through BNIP3 in nasopharyngeal carcinoma

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
San Xu ◽  
Zhuan Zhou ◽  
Xingzhi Peng ◽  
Xuxiu Tao ◽  
Peijun Zhou ◽  
...  

AbstractStudies have indicated that dysfunction of autophagy is involved in the initiation and progression of multiple tumors and their chemoradiotherapy. Epstein–Barr virus (EBV) is a lymphotropic human gamma herpes virus that has been implicated in the pathogenesis of nasopharyngeal carcinoma (NPC). EBV encoded latent membrane protein1 (LMP1) exhibits the properties of a classical oncoprotein. In previous studies, we experimentally demonstrated that LMP1 could increase the radioresistance of NPC. However, how LMP1 contributes to the radioresistance in NPC is still not clear. In the present study, we found that LMP1 could enhance autophagy by upregulating the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3). Knockdown of BNIP3 could increase the apoptosis and decrease the radioresistance mediated by protective autophagy in LMP1-positive NPC cells. The data showed that increased BNIP3 expression is mediated by LMP1 through the ERK/HIF1α signaling axis, and LMP1 promotes the binding of BNIP3 to Beclin1 and competitively reduces the binding of Bcl-2 to Beclin1, thus upregulating autophagy. Furthermore, knockdown of BNIP3 can reduce the radioresistance promoted by protective autophagy in vivo. These data clearly indicated that, through BNIP3, LMP1 induced autophagy, which has a crucial role in the protection of LMP1-positive NPC cells against irradiation. It provides a new basis and potential target for elucidating LMP1-mediated radioresistance.

1991 ◽  
Vol 65 (11) ◽  
pp. 6252-6259 ◽  
Author(s):  
K J Gilligan ◽  
P Rajadurai ◽  
J C Lin ◽  
P Busson ◽  
M Abdel-Hamid ◽  
...  

2006 ◽  
Vol 80 (19) ◽  
pp. 9628-9633 ◽  
Author(s):  
Susan M. Turk ◽  
Ru Jiang ◽  
Liudmila S. Chesnokova ◽  
Lindsey M. Hutt-Fletcher

ABSTRACT Epstein-Barr virus (EBV) is a persistent, orally transmitted herpesvirus that replicates in B cells and epithelial cells and is associated with lymphoid and epithelial malignancies. The virus binds to CD21 on B cells via glycoprotein gp350/220 and infects efficiently. Infection of cultured epithelial cells has not typically been efficient but can occur in the absence of gp350/220 and CD21 and in vivo is thought to be important to the development of nasopharyngeal carcinoma. We report here that antibodies to gp350/220, which inhibit EBV infection of B cells, enhance infection of epithelial cells. The effect is not mediated by Fc receptor binding but is further enhanced by antibody cross-linking, which may patch gp350/220 in the virus envelope. Saliva from EBV-seropositive individuals has similar effects that can be reversed by depletion of antibody. The results are consistent with a model in which gp350/220 interferes with the access of other important players to the epithelial cell surface. The results may have implications for the development of nasopharyngeal carcinoma in high-risk populations in which elevated titers of antibody to EBV lytic cycle proteins are prognostic.


2018 ◽  
Author(s):  
Anna Chi Man Tsang ◽  
Shaina Chor Mei Huang ◽  
Ming Han Tsai ◽  
Henri-Jacques Delecluse ◽  
Honglin Chen ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 1957-1966 ◽  
Author(s):  
Jihène Klibi ◽  
Toshiro Niki ◽  
Alexander Riedel ◽  
Catherine Pioche-Durieu ◽  
Sylvie Souquere ◽  
...  

Epstein-Barr virus (EBV)–associated nasopharyngeal carcinoma (NPC) is the third most frequent virus-associated human malignancy. How this tumor escapes immune recognition despite the expression of several viral antigens has remained poorly understood. Our previous in vitro studies have shown that NPC cells release exosomes containing high amounts of galectin-9, a ligand of the membrane receptor Tim-3, which is able to induce apoptosis in mature Th1 lymphocytes. Here, we sought to determine whether galectin-9–carrying exosomes were produced in NPC patients and whether such exosomes might play a role in the immune evasion of NPC cells. We report that galectin-9–containing exosomes are selectively detected in plasma samples from NPC patients and mice xenografted with NPC tumors. The incorporation into exosomes protects galectin-9 against proteolytic cleavage but retains its Tim-3–binding capacity. Importantly, NPC exosomes induce massive apoptosis in EBV-specific CD4+ cells used as a model of target T cells. This effect is inhibited by both anti–Tim-3 and antigalectin-9 blocking antibodies. These results indicate that blocking galectin-9/Tim-3 interaction in vivo might alleviate the Th1-suppressive effect of NPC exosomes and sustain antitumoral T-cell responses and thereby improve clinical efficacy of immunotherapeutic approaches against NPC.


1999 ◽  
Vol 73 (10) ◽  
pp. 8857-8866 ◽  
Author(s):  
Yao Chang ◽  
Che-Huang Tung ◽  
Yu-Tzu Huang ◽  
Jean Lu ◽  
Jen-Yang Chen ◽  
...  

ABSTRACT Two nasopharyngeal carcinoma (NPC) cell lines and one keratinocyte cell line could be infected with Epstein-Barr virus (EBV) by cocultivation with virus-producing cells but not by cell-free virus. Using porous culture inserts to manipulate the cell-to-cell contact, we demonstrated that contact between EBV donor B cells and EBV recipient epithelial cells was required for the infection. Cell-to-cell contact not only provided a CR2-independent route of infection but also enhanced CR2-mediated infection in a synergistic manner. Activity of two EBV promoters (Cp and Wp) and expression of EBNA2 were detected in the infected population. A small proportion of the infected cells spontaneously entered an EBV lytic state, which could be induced prominently by chemical treatment. This study provides information on how EBV may infect epithelial cells in vivo, such as at the onset of NPC development.


Author(s):  
R. Stephens ◽  
K. Traul ◽  
D. Woolf ◽  
P. Gaudreau

A number of antigens have been found associated with persistent EBV infections of lymphoblastoid cells. Identification and localization of these antigens were principally by immunofluorescence (IF) techniques using sera from patients with nasopharyngeal carcinoma (NPC), Burkitt lymphoma (BL), and infectious mononucleosis (IM). Our study was mainly with three of the EBV related antigens, a) virus capsid antigen (VCA), b) membrane antigen (MA), and c) early antigens (EA) using immunoperoxidase (IP) techniques with electron microscopy (EM) to elucidate the sites of reactivity with EBV and EBV infected cells.Prior to labeling with horseradish peroxidase (HRP), sera from NPC, IM, and BL cases were characterized for various reactivities by the indirect IF technique. Modifications of the direct IP procedure described by Shabo and the indirect IP procedure of Leduc were made to enhance penetration of the cells and preservation of antigen reactivity.


2020 ◽  
Vol 13 (3) ◽  
pp. 192-205 ◽  
Author(s):  
Fanghong Lei ◽  
Tongda Lei ◽  
Yun Huang ◽  
Mingxiu Yang ◽  
Mingchu Liao ◽  
...  

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.


Sign in / Sign up

Export Citation Format

Share Document