Epigenetic alterations in nasopharyngeal carcinoma and Epstein-Barr virus (EBV) associated gastric carcinoma: a lesson in contrasts

Author(s):  
Niller Hans-Helmut ◽  
◽  
Banati Ferenc ◽  
Minarovits Janos ◽  
◽  
...  
2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Xiang Zheng ◽  
Jia Wang ◽  
Lingyu Wei ◽  
Qiu Peng ◽  
Yingxue Gao ◽  
...  

ABSTRACTEpstein-Barr virus (EBV) is the first human virus found to encode many microRNAs. It is etiologically linked to nasopharyngeal carcinoma and EBV-associated gastric carcinoma. During the latent infection period, there are only a few EBV proteins expressed, whereas EBV microRNAs, such as the BamHI-A region rightward transcript (BART) microRNAs, are highly expressed. However, how these BART miRNAs precisely regulate the tumor growth in nasopharyngeal carcinoma and gastric carcinoma remains obscure. Here, we report that upregulation of EBV-miR-BART5-3p promotes the growth of nasopharyngeal carcinoma and gastric carcinoma cells. BART5-3p directly targets the tumor suppressor geneTP53on its 3′-untranslated region (3′-UTR) and consequently downregulatesCDKN1A,BAX, andFASexpression, leading to acceleration of the cell cycle progress and inhibition of cell apoptosis. BART5-3p contributes to the resistance to chemotherapeutic drugs and ionizing irradiation-induced p53 increase. Moreover, BART5-3p also facilitates degradation of p53 proteins. BART5-3p is the first EBV-microRNA to be identified as inhibiting p53 expression and function, which suggests a novel mechanism underlying the strategies employed by EBV to maintain latent infection and promote the development of EBV-associated carcinomas.IMPORTANCEEBV encodes 44 mature microRNAs, which have been proven to promote EBV-associated diseases by targeting host genes and self-viral genes. In EBV-associated carcinomas, the expression of viral protein is limited but the expression of BART microRNAs is extremely high, suggesting that they could be major factors in the contribution of EBV-associated tumorigenesis. p53 is a critical tumor suppressor. Unlike in most human solid tumors, TP53 mutations are rare in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues, suggesting a possibility that some EBV-encoded products suppress the functions of p53. This study provides the first evidence that a BART microRNA can suppress p53 expression by directly targeting its 3′-UTR. This study implies that EBV can use its BART microRNAs to modulate the expression of p53, thus maintaining its latency and contributing to tumorigenesis.


2011 ◽  
Vol 157 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Bing Luo ◽  
Mengyang Liu ◽  
Yan Chao ◽  
Yun Wang ◽  
Yongzheng Jing ◽  
...  

Author(s):  
R. Stephens ◽  
K. Traul ◽  
D. Woolf ◽  
P. Gaudreau

A number of antigens have been found associated with persistent EBV infections of lymphoblastoid cells. Identification and localization of these antigens were principally by immunofluorescence (IF) techniques using sera from patients with nasopharyngeal carcinoma (NPC), Burkitt lymphoma (BL), and infectious mononucleosis (IM). Our study was mainly with three of the EBV related antigens, a) virus capsid antigen (VCA), b) membrane antigen (MA), and c) early antigens (EA) using immunoperoxidase (IP) techniques with electron microscopy (EM) to elucidate the sites of reactivity with EBV and EBV infected cells.Prior to labeling with horseradish peroxidase (HRP), sera from NPC, IM, and BL cases were characterized for various reactivities by the indirect IF technique. Modifications of the direct IP procedure described by Shabo and the indirect IP procedure of Leduc were made to enhance penetration of the cells and preservation of antigen reactivity.


2020 ◽  
Vol 13 (3) ◽  
pp. 192-205 ◽  
Author(s):  
Fanghong Lei ◽  
Tongda Lei ◽  
Yun Huang ◽  
Mingxiu Yang ◽  
Mingchu Liao ◽  
...  

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.


Sign in / Sign up

Export Citation Format

Share Document