scholarly journals MFG-E8 accelerates wound healing in diabetes by regulating “NLRP3 inflammasome-neutrophil extracellular traps” axis

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei Huang ◽  
Jinyu Jiao ◽  
Ju Liu ◽  
Meng Huang ◽  
Yanyan Hu ◽  
...  

Abstract Sustained activation of NLRP3 inflammasome and release of neutrophil extracellular traps (NETs) impair wound healing of diabetic foot ulcers (DFUs). Our previous study reported that milk fat globule epidermal growth factor VIII (MFG-E8) attenuates tissue damage in systemic lupus erythematosus. However, the functional effect of MFG-E8 on “NLRP3 inflammasome-NETs” inflammatory loop in wound healing of diabetes is not completely elucidated. In this study, neutrophils from DFU patients are susceptible to undergo NETosis, releasing more NETs. The circulating levels of NET components neutrophil elastase and proteinase 3 and inflammatory cytokines IL-1β and IL-18 were significantly elevated in DFU patients compared with healthy controls or diabetic patients, in spite of higher levels of MFG-E8 in DFU patients. In Mfge8−/− diabetic mice, skin wound displayed exaggerated inflammatory response, including leukocyte infiltration, excessive activation of NLRP3 inflammasome (release of higher IL-1β, IL-18, and TNF-α), largely lodged NETs, resulting in poor angiogenesis and wound closure. When stimulated with high-dose glucose or IL-18, MFG-E8-deficient neutrophils release more NETs than WT neutrophils. After administration of recombinant MFG-E8, IL-18-primed NETosis of WT or Mfge8−/− neutrophils was significantly inhibited. Furthermore, NET and mCRAMP (component of NETs, the murine equivalent of cathelicidin LL-37 in human)-mediated activation of NLRP3 inflammasome and production of IL-1β/IL-18 were significantly elevated in Mfge8−/− macrophages compared with WT macrophages, which were also significantly dampened by the administration of rmMFG-E8. Therefore, our study demonstrated that as inhibitor of the “NLRP3 inflammasome-NETs” inflammatory loop, exogenous rMFG-E8 improves angiogenesis and accelerates wound healing, highlighting possible therapeutic potential for DFUs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Jiang ◽  
Nan Shen ◽  
Haibo Zhou ◽  
You Wang ◽  
Sihan Lin ◽  
...  

AbstractDespite the advances made in the management of pregnancies in women with systemic lupus erythematosus (SLE), the rate of adverse pregnancy outcomes is still higher than that in the general population. In the last few years, neutrophil extracellular traps (NETs) were proven to be detrimental in both autoimmune diseases and placental injury. We investigated whether NETs could be detected in the placentas of pregnant individuals with SLE and explored the relationship between NETs and decidual natural killer cells (dNKs), which comprise the majority of immune cells at the maternal–fetal interface, using clinical samples and animal models. In this study, we found that the infiltration of NETs and dNKs, especially CD56+CD16+ NK cells, was significantly increased in pregnant individuals with SLE with placental insufficiency. In the murine models of SLE, the number of dNKs was significantly decreased due to the decreased formation of NETs affected by Ly6G. Moreover, the histopathological placental injury was reduced, with a remarkable increase in fetal birth weight. This study shows that NETs may contribute to immunological disorder in the placenta and the pathological changes in pregnancies with SLE, which provides a research basis for further explorations of the mechanism of SLE in placental impairment.


2020 ◽  
Author(s):  
Yongfa Sun ◽  
Lili Song ◽  
Yong Zhang ◽  
Hongjun Wang ◽  
Xiao Dong

Abstract BACKGROUND: Diabetic patients suffer from impaired wound healing. Mesenchymal stem cell (MSC) therapy represents a promising approach toward improving skin wound healing through release of soluble growth factors and cytokines that stimulate new vessel formation and modulate inflammation. Whether adipose-derived MSCs (ASCs) from type 2 diabetes donors are suitable for skin damage repair remains largely unknown. METHODS: In this study, we compared the phenotype and functionality of ASCs harvested from high fat diet (HFD) and streptozotocin (STZ)-induced T2D or control mice, and assessed their abilities to promote wound healing in an excisional wound splinting mouse model with T2D. RESULTS: T2D ASCs expressed similar cellular markers as control ASCs, but secreted less hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β). T2D ASCs were somewhat less effective in promoting healing of the wound, as manifested by slightly reduced re-epithelialization, cutaneous appendage regeneration, and collagen III deposition in wound tissues. In vitro, T2D ASCs promoted proliferation and migration of skin fibroblasts to a comparable extent as control ASCs via suppression of inflammation and macrophage infiltration. CONCLUSIONS: From these findings, we conclude that, although ASCs from T2D mice are marginally inferior to control ASCs, they possess comparable therapeutic effects in wound healing.


2020 ◽  
Author(s):  
Paula A. Borges ◽  
Ingrid Waclawiak ◽  
Janaína L. Georgii ◽  
Janaína F. Barros ◽  
Vanderlei S. Fraga-Junior ◽  
...  

AbstractSeveral studies have shown the importance of purinergic signaling in various inflammatory diseases. In diabetes mellitus, there is an increase in the activity of some nucleotidases suggesting that this signaling may be affected in the diabetic skin. Thus, the aim of our study was to investigate the effect of ADP on wound healing in diabetic skin. Swis and C57BL/6 mice were pharmacologic induced to type 1 diabetes and submitted to a full-thickness excisional wound model to evaluate the effect of ADP as a topic treatment. Adenosine diphosphate accelerated cutaneous wound healing, improved the new tissue formation, and increased collagen deposit by positively modulating P2Y1 and P2Y12 and TGF-β production. In parallel, ADP reduced reactive oxygen species production and TNF-α levels, while increased IFNγ, IL-10 and IL-13 levels in the skin. Also, ADP induced the migration of neutrophils, eosinophils, mast cells, TCRγ4+, and TCRγ5+ cells while reduced Treg cells towards the lesion at day 7. In accordance, ADP increased the proliferation and migration of fibroblast, induced myofibroblast differentiation and keratinocyte proliferation in a P2Y12-dependent manner. We provide the first evidence of ADP acting as a potent mediator on skin wound resolution and a possible therapeutic approach for diabetic patients worldwide.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2667
Author(s):  
Andrea Angeletti ◽  
Stefano Volpi ◽  
Maurizio Bruschi ◽  
Francesca Lugani ◽  
Augusto Vaglio ◽  
...  

Neutrophil extracellular traps (NETs) are macromolecular structures programmed to trap circulating bacteria and viruses. The accumulation of NETs in the circulation correlates with the formation of anti-double-stranded (ds) DNA antibodies and is considered a causative factor for systemic lupus erythematosus (SLE). The digestion of DNA by DNase1 and DNases1L3 is the rate- limiting factor for NET accumulation. Mutations occurring in one of these two DNASE genes determine anti-DNA formation and are associated with severe Lupus-like syndromes and lupus nephritis (LN). A second mechanism that may lead to DNase functional impairment is the presence of circulating DNase inhibitors in patients with low DNase activity, or the generation of anti-DNase antibodies. This phenomenon has been described in a relevant number of patients with SLE and may represent an important mechanism determining autoimmunity flares. On the basis of the reviewed studies, it is tempting to suppose that the blockade or selective depletion of anti-DNase autoantibodies could represent a potential novel therapeutic approach to prevent or halt SLE and LN. In general, strategies aimed at reducing NET formation might have a similar impact on the progression of SLE and LN.


2019 ◽  
Vol 39 (11) ◽  
pp. 1849-1857 ◽  
Author(s):  
Ivica Jeremic ◽  
Olivera Djuric ◽  
Milos Nikolic ◽  
Marina Vlajnic ◽  
Aleksandra Nikolic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document