scholarly journals Accumulation of APP-CTF induces mitophagy dysfunction in the iNSCs model of Alzheimer’s disease

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Seung-Eun Lee ◽  
Daekee Kwon ◽  
Nari Shin ◽  
Dasom Kong ◽  
Nam Gyo Kim ◽  
...  

AbstractMitochondrial dysfunction is associated with familial Alzheimer’s disease (fAD), and the accumulation of damaged mitochondria has been reported as an initial symptom that further contributes to disease progression. In the amyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by β-secretase to generate a C-terminal fragment, which is then cleaved by γ-secretase to produce amyloid-beta (Aβ). The accumulation of Aβ and its detrimental effect on mitochondrial function are well known, yet the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) contributing to this pathology have rarely been reported. We demonstrated the effects of APP-CTFs-related pathology using induced neural stem cells (iNSCs) from AD patient-derived fibroblasts. APP-CTFs accumulation was demonstrated to mainly occur within mitochondrial domains and to be both a cause and a consequence of mitochondrial dysfunction. APP-CTFs accumulation also resulted in mitophagy failure, as validated by increased LC3-II and p62 and inconsistent PTEN-induced kinase 1 (PINK1)/E3 ubiquitin ligase (Parkin) recruitment to mitochondria and failed fusion of mitochondria and lysosomes. The accumulation of APP-CTFs and the causality of impaired mitophagy function were also verified in AD patient-iNSCs. Furthermore, we confirmed this pathological loop in presenilin knockout iNSCs (PSEN KO-iNSCs) because APP-CTFs accumulation is due to γ-secretase blockage and similarly occurs in presenilin-deficient cells. In the present work, we report that the contribution of APP-CTFs accumulation is associated with mitochondrial dysfunction and mitophagy failure in AD patient-iNSCs as well as PSEN KO-iNSCs.

2014 ◽  
Vol 33 (4) ◽  
pp. 1003-1012 ◽  
Author(s):  
GEUN-SHIK LEE ◽  
YEON WOO JEONG ◽  
JOUNG JOO KIM ◽  
SUN WOO PARK ◽  
KYEONG HEE KO ◽  
...  

2021 ◽  
Author(s):  
Shane M. Ohline ◽  
Connie Chan ◽  
Lucia Schoderboeck ◽  
Hollie E. Wicky ◽  
Warren P. Tate ◽  
...  

Abstract Soluble amyloid precursor protein-alpha (sAPPα) is a regulator of neuronal and memory mechanisms, while also having neurogenic and neuroprotective effects in the brain. As adult hippocampal neurogenesis is impaired in Alzheimer’s disease, we tested the hypothesis that sAPPα delivery would rescue adult hippocampal neurogenesis in an APP/PS1 mouse model of Alzheimer’s disease. An adeno-associated virus-9 (AAV9) encoding murine sAPPα was injected into the hippocampus of 8 month-old wild-type and APP/PS1 mice, and later two different thymidine analogues (XdU) were systemically injected to label adult-born cells at different time points after viral transduction. The proliferation of adult-born cells, cell survival after eight weeks, and cell differentiation into either neurons or astrocytes was studied. Proliferation was impaired in APP/PS1 mice but was restored to wild-type levels by viral expression of sAPPα. In contrast, sAPPα overexpression failed to rescue the survival of XdU+-labelled cells that was impaired in APP/PS1 mice, although it did cause a significant increase in the area density of astrocytes in the granule cell layer across both genotypes. Finally, viral expression of sAPPα reduced amyloid-beta plaque load in APP/PS1 mice in the dentate gyrus and somatosensory cortex. These data add further evidence that increased levels of sAPPα could be therapeutic for the cognitive decline in AD, in part through restoration of the proliferation of neural progenitor cells in adults.


Sign in / Sign up

Export Citation Format

Share Document