scholarly journals The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes

Cell Research ◽  
2020 ◽  
Vol 30 (7) ◽  
pp. 626-629 ◽  
Author(s):  
Ellen Ngar-Yun Poon ◽  
Xiao-ling Luo ◽  
Sarah E. Webb ◽  
Bin Yan ◽  
Rui Zhao ◽  
...  
2014 ◽  
Vol 3 (4) ◽  
pp. 470-480 ◽  
Author(s):  
Miriam E. van Strien ◽  
Jacqueline A. Sluijs ◽  
Brent A. Reynolds ◽  
Dennis A. Steindler ◽  
Eleonora Aronica ◽  
...  

2019 ◽  
Author(s):  
Luisa de Lemos ◽  
André Dias ◽  
Ana Nóvoa ◽  
Moisés Mallo

ABSTRACTThe vertebrate body is built during embryonic development by the sequential addition of new tissue as the embryo grows at its caudal end. During this process, the neuro-mesodermal progenitors (NMPs) generate the postcranial neural tube and paraxial mesoderm. Recently, several approaches have been designed to determine their molecular fingerprint but a simple method to isolate NMPs from embryos without the need for transgenic markers is still missing. We isolated NMPs using a genetic strategy that exploits their self-renew properties, and searched their transcriptome for cell surface markers. We found a distinct Epha1 expression profile in progenitor-containing areas of the mouse embryo, consisting of two cell subpopulations with different Epha1 expression levels. We show that Sox2+/T+ cells are preferentially associated with the Epha1 compartment, indicating that NMPs might be contained within this cell pool. Transcriptional profiling showed enrichment of high Epha1-expressing cells in known NMP and early mesoderm markers. Also, tail bud cells with lower Epha1 levels contained a molecular signature suggesting the presence of notochord progenitors. Our results thus indicate that Epha1 could represent a valuable cell surface marker for different subsets of axial progenitors, most particularly for NMPs taking mesodermal fates.


Sign in / Sign up

Export Citation Format

Share Document