scholarly journals Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis

2019 ◽  
Vol 28 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Tobias Fleige ◽  
Siegfried Burggraf ◽  
Ludwig Czibere ◽  
Julia Häring ◽  
Birgit Glück ◽  
...  
2018 ◽  
Vol 31 (8) ◽  
pp. 927-931 ◽  
Author(s):  
Xiaomei Luo ◽  
Ruifang Wang ◽  
Yanjie Fan ◽  
Xuefan Gu ◽  
Yongguo Yu

Abstract Background Tandem mass spectrometry (MS/MS) has been used for newborn screening (NBS) of inherited metabolic diseases (IMDs) for decades. However, the traditional approach can yield false-positive or false-negative results and is affected by biochemical substrate-level fluctuations. To overcome the current limitations, we explored the possibility of using next-generation sequencing (NGS) as a second-tier diagnostic test to detect gene mutations in samples with abnormal MS/MS results. Methods Genomic DNA was extracted from dried blood spots and we designed a multigene panel, comprising 77 genes related to over 40 IMDs, for NBS. The prepared libraries were sequenced on the Ion Personal Genome Machine (PGM) platform. Thirty-eight samples identified as abnormal by MS/MS were tested for the diagnostic accuracy of NGS compared with Sanger sequencing. Results The concentration of DNA extracted from the 38 dried blood spots was sufficient for library preparation. The coverage and depth of the sequencing data were sufficient for the analysis. For all samples, the NGS results were consistent with the Sanger sequencing results. Conclusions The genomic DNA extracted from dried blood spots could be used for NGS, generating reliable sequencing results, and NGS may function as a second-tier diagnostic test for NBS. Ion PGM could facilitate the molecular diagnosis of IMDs with appropriate primers designed for candidate genes.


2021 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Nicole Ruiz-Schultz ◽  
Bryce Asay ◽  
Andreas Rohrwasser

Expansion of the newborn disorder panel requires the incorporation of new testing modalities. This is especially true for disorders lacking robust biomarkers for detection in primary screening methods and for disorders requiring genotyping or sequencing as a second-tier and/or diagnostic test. In this commentary, we discuss how next-generation sequencing (NGS) methods can be used as a secondary testing method in NBS. Additionally, we elaborate on the importance of genomic variant repositories for the annotation and interpretation of variants. Barriers to the incorporation of NGS and bioinformatics within NBS are discussed, and ideas for a regional bioinformatics model and shared variant repository are presented as potential solutions.


2021 ◽  
Vol 7 (4) ◽  
pp. 73
Author(s):  
Robert J. Sicko ◽  
Colleen F. Stevens ◽  
Erin E. Hughes ◽  
Melissa Leisner ◽  
Helen Ling ◽  
...  

Newborn screening (NBS) for Cystic Fibrosis (CF) is associated with improved outcomes. All US states screen for CF; however, CF NBS algorithms have high false positive (FP) rates. In New York State (NYS), the positive predictive value of CF NBS improved from 3.7% to 25.2% following the implementation of a three-tier IRT-DNA-SEQ approach using commercially available tests. Here we describe a modification of the NYS CF NBS algorithm via transition to a new custom next-generation sequencing (NGS) platform for more comprehensive cystic fibrosis transmembrane conductance regulator (CFTR) gene analysis. After full gene sequencing, a tiered strategy is used to first analyze only a specific panel of 338 clinically relevant CFTR variants (second-tier), followed by unblinding of all sequence variants and bioinformatic assessment of deletions/duplications in a subset of samples requiring third-tier analysis. We demonstrate the analytical and clinical validity of the assay and the feasibility of use in the NBS setting. The custom assay has streamlined our molecular workflow, increased throughput, and allows for bioinformatic customization of second-tier variant panel content. NBS aims to identify those infants with the highest disease risk. Technological molecular improvements can be applied to NBS algorithms to reduce the burden of FP referrals without loss of sensitivity.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


2012 ◽  
Vol 37 (5) ◽  
pp. 811-820 ◽  
Author(s):  
Rajeev K Varshney ◽  
Himabindu Kudapa ◽  
Manish Roorkiwal ◽  
Mahendar Thudi ◽  
Manish K Pandey ◽  
...  

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Wells W. Wu ◽  
Je-Nie Phue ◽  
Chun-Ting Lee ◽  
Changyi Lin ◽  
Lai Xu ◽  
...  

2019 ◽  
Vol 220 (10) ◽  
pp. 1609-1619 ◽  
Author(s):  
Sarah Wagner ◽  
David Roberson ◽  
Joseph Boland ◽  
Aimée R Kreimer ◽  
Meredith Yeager ◽  
...  

AbstractBackgroundHuman papillomaviruses (HPV) cause over 500 000 cervical cancers each year, most of which occur in low-resource settings. Human papillomavirus genotyping is important to study natural history and vaccine efficacy. We evaluated TypeSeq, a novel, next-generation, sequencing-based assay that detects 51 HPV genotypes, in 2 large international epidemiologic studies.MethodsTypeSeq was evaluated in 2804 cervical specimens from the Study to Understand Cervical Cancer Endpoints and Early Determinants (SUCCEED) and in 2357 specimens from the Costa Rica Vaccine Trial (CVT). Positive agreement and risks of precancer for individual genotypes were calculated for TypeSeq in comparison to Linear Array (SUCCEED). In CVT, positive agreement and vaccine efficacy were calculated for TypeSeq and SPF10-LiPA.ResultsWe observed high overall and positive agreement for most genotypes between TypeSeq and Linear Array in SUCCEED and SPF10-LiPA in CVT. There was no significant difference in risk of precancer between TypeSeq and Linear Array in SUCCEED or in estimates of vaccine efficacy between TypeSeq and SPF10-LiPA in CVT.ConclusionsThe agreement of TypeSeq with Linear Array and SPF10-LiPA, 2 well established standards for HPV genotyping, demonstrates its high accuracy. TypeSeq provides high-throughput, affordable HPV genotyping for world-wide studies of cervical precancer risk and of HPV vaccine efficacy.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151775 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Michael D. Armani ◽  
Patricia A. Fetsch ◽  
Liqiang Xi ◽  
Tina Thu Pham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document