scholarly journals Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities

Author(s):  
Virginie Carmignac ◽  
◽  
Cyril Mignot ◽  
Emmanuelle Blanchard ◽  
Paul Kuentz ◽  
...  

Abstract Purpose Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. Methods From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. Results MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. Conclusion MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex.

Author(s):  
Virginie Carmignac ◽  
Cyril Mignot ◽  
Emmanuelle Blanchard ◽  
Paul Kuentz ◽  
Marie-Hélène Aubriot-Lorton ◽  
...  

Author(s):  
Pauline Arnaud ◽  
Hélène Morel ◽  
Olivier Milleron ◽  
Laurent Gouya ◽  
Christine Francannet ◽  
...  

Abstract Purpose Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. Methods Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. Results These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. Conclusion This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


2021 ◽  
Vol 22 (6) ◽  
pp. 2824
Author(s):  
Jan H. Döring ◽  
Julian Schröter ◽  
Jerome Jüngling ◽  
Saskia Biskup ◽  
Kerstin A. Klotz ◽  
...  

Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Philippe A. Salles ◽  
Ignacio F. Mata ◽  
Tobias Brünger ◽  
Dennis Lal ◽  
Hubert H. Fernandez

The Na+/K+ ATPases are Sodium-Potassium exchanging pumps, with a heteromeric α-β-γ protein complex. The α3 isoform is required as a rescue pump, after repeated action potentials, with a distribution predominantly in neurons of the central nervous system. This isoform is encoded by the ATP1A3 gene. Pathogenic variants in this gene have been implicated in several phenotypes in the last decades. Carriers of pathogenic variants in this gene manifest neurological and non-neurological features in many combinations, usually with an acute onset and paroxysmal episodes triggered by fever or other factors. The first three syndromes described were: (1) rapid-onset dystonia parkinsonism; (2) alternating hemiplegia of childhood; and, (3) cerebellar ataxia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS syndrome). Since their original description, an expanding number of cases presenting with atypical and overlapping features have been reported. Because of this, ATP1A3-disorders are now beginning to be viewed as a phenotypic continuum representing discrete expressions along a broadly heterogeneous clinical spectrum.


Author(s):  
L Gauquelin ◽  
FK Cayami ◽  
L Sztriha ◽  
G Yoon ◽  
LT Tran ◽  
...  

Background: Biallelic variants in POLR1C are associated with POLR3-related leukodystrophy (POLR3-HLD), or 4H leukodystrophy (Hypomyelination, Hypodontia, Hypogonadotropic Hypogonadism), and Treacher Collins syndrome (TCS). The clinical spectrum of POLR3-HLD caused by variants in this gene has not been described. Methods: A cross-sectional observational study involving 25 centers worldwide was conducted between 2016 and 2018. The clinical, radiologic and molecular features of 23 unreported and previously reported cases of POLR3-HLD caused by POLR1C variants were reviewed. Results: Most participants presented between birth and age 6 years with motor difficulties. Neurological deterioration was seen during childhood, suggesting a more severe phenotype than previously described. The dental, ocular and endocrine features often seen in POLR3-HLD were not invariably present. Five patients (22%) had a combination of hypomyelinating leukodystrophy and abnormal craniofacial development, including one individual with clear TCS features. Several cases did not exhibit all the typical radiologic characteristics of POLR3-HLD. A total of 29 different pathogenic variants in POLR1C were identified, including 13 new disease-causing variants. Conclusions: Based on the largest cohort of patients to date, these results suggest novel characteristics of POLR1C-related disorder, with a spectrum of clinical involvement characterized by hypomyelinating leukodystrophy with or without abnormal craniofacial development reminiscent of TCS.


2011 ◽  
Vol 50 (10) ◽  
pp. 1234-1239 ◽  
Author(s):  
Céline Devillers ◽  
Pascale Quatresooz ◽  
Trinh Hermanns-Lê ◽  
Gregory Szepetiuk ◽  
Roland Lemaire ◽  
...  

2020 ◽  
Vol 32 (4) ◽  
pp. 321-334
Author(s):  
Miriam Elbracht ◽  
Gerhard Binder ◽  
Olaf Hiort ◽  
Cordula Kiewert ◽  
Christian Kratz ◽  
...  

Abstract Imprinting disorders are exceptional within the group of monogenic syndromes. They are associated with molecular changes affecting imprinted regions and usually do not follow the rules of Mendelian inheritance. They account for a relevant proportion of congenital disorders, especially within the syndromal growth entities with endocrine, neurological, and skeletal characteristics. In patients with imprinting disorders and accelerated growth, significant tumor risks have to be considered. The number of known imprinting disorders increases with the identification of new regions in which parentally imprinted genes are located. Imprinting disorders are caused by genomic pathogenic variants affecting imprinted genes, as well as by aberrant imprinting marks (epimutations) in the patients themselves. Additionally, maternal effect mutations have recently been identified that trigger secondary epimutations in the offspring. These maternal effect mutations explain not only imprinting disorders in their children, but also recurrent reproductive failure in the families. This review aims to provide an overview of the recent findings in 13 well-known imprinting disorders relating to clinical diagnosis, management and counseling.


Sign in / Sign up

Export Citation Format

Share Document