scholarly journals Distinct representations of basic taste qualities in human gustatory cortex

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Junichi Chikazoe ◽  
Daniel H. Lee ◽  
Nikolaus Kriegeskorte ◽  
Adam K. Anderson
Keyword(s):  
2020 ◽  
Vol 123 (5) ◽  
pp. 1995-2009 ◽  
Author(s):  
Cecilia G. Bouaichi ◽  
Roberto Vincis

Relatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes chemosensory and palatability features of a wide panel of gustatory stimuli when actively sampled through licking. Our results show that GC neurons broadly encode basic taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 667
Author(s):  
Russell Keast ◽  
Andrew Costanzo ◽  
Isabella Hartley

There are numerous and diverse factors enabling the overconsumption of foods, with the sense of taste being one of these factors. There are four well established basic tastes: sweet, sour, salty, and bitter; all with perceptual independence, salience, and hedonic responses to encourage or discourage consumption. More recently, additional tastes have been added to the basic taste list including umami and fat, but they lack the perceptual independence and salience of the basics. There is also emerging evidence of taste responses to kokumi and carbohydrate. One interesting aspect is the link with the new and emerging tastes to macronutrients, with each macronutrient having two distinct perceptual qualities that, perhaps in combination, provide a holistic perception for each macronutrient: fat has fat taste and mouthfeel; protein has umami and kokumi; carbohydrate has sweet and carbohydrate tastes. These new tastes can be sensed in the oral cavity, but they have more influence post- than pre-ingestion. Umami, fat, kokumi, and carbohydrate tastes have been suggested as an independent category named alimentary. This narrative review will present and discuss evidence for macronutrient sensing throughout the alimentary canal and evidence of how each of the alimentary tastes may influence the consumption of foods.


1997 ◽  
Vol 28 ◽  
pp. S232
Author(s):  
Tatsuko Yokota ◽  
Kunihiro Eguchi ◽  
Toyohiko Satoh
Keyword(s):  

1988 ◽  
Vol 42 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Simon Yaxley ◽  
Edmund T. Rolls ◽  
Zenon J. Sienkiewicz

2019 ◽  
Vol 44 (7) ◽  
pp. 435-447 ◽  
Author(s):  
Thomas Mouillot ◽  
Sophie Barthet ◽  
Lucie Janin ◽  
Camille Creteau ◽  
Hervé Devilliers ◽  
...  

Abstract Glucose, fructose, and sucrose are important carbohydrates in Western diets with particular sweetness intensity and metabolisms. No study has compared their cerebral detection and their taste perception. Gustatory evoked potentials (GEPs), taste detection thresholds, intensity perception, and pleasantness were compared in response to glucose, fructose, and sucrose solutions at similar sweetness intensities and at identical molar concentrations. Twenty-three healthy subjects were randomly stimulated with 3 solutions of similar sweetness intensity (0.75 M of glucose, 0.47 M of fructose and 0.29 M of sucrose – sit. A), and with an identical molar concentration (0.29 M – sit. B). GEPs were recorded at gustatory cortex areas. Intensity perception and hedonic values of each solution were evaluated as were gustatory thresholds of the solutions. No significant difference was observed concerning the GEP characteristics of the solutions according to their sweetness intensities (sit. A) or their molar concentration (sit. B). In sit. A, the 3 solutions were perceived to have similar intensities and induced similar hedonic sensations. In sit. B, the glucose solution was perceived to be less intense and pleasant than the fructose and the sucrose solutions (P < 0.001) and the fructose solution was perceived to be less intense and pleasant than the sucrose (P < 0.001). Since GEP recordings were similar for glucose, fructose, and sucrose solutions whatever the concentrations, activation of same taste receptor induces similar cortical activation, even when the solutions were perceived differently. Sweet taste perception seems to be encoded by a complex chemical cerebral neuronal network.


1989 ◽  
Vol 61 (6) ◽  
pp. 1244-1258 ◽  
Author(s):  
T. Yamamoto ◽  
R. Matsuo ◽  
Y. Kiyomitsu ◽  
R. Kitamura

1. Activities of 35 taste-responsive neurons in the cortical gustatory area were recorded with chronically implanted fine wires in freely ingesting Wistar rats. Quantitative analyses were performed on responses to distilled water, food solution, and four taste stimuli: sucrose, NaCl, HCl, and quinine hydrochloride. 2. Taste-responsive neurons were classified into type-1 and type-2 groups according to the response patterns to licking of the six taste stimuli. Type-1 neurons (n = 29) responded in excitatory or inhibitory directions to one or more of the taste stimuli. Type-2 neurons (n = 6) showed responses in different directions depending upon palatability of the liquids to rats: neurons showing excitatory (or inhibitory) responses to palatable stimuli exhibited inhibitory (or excitatory) responses to unpalatable stimuli. 3. Correlation coefficients of responses to pairs of stimuli across neurons suggested that palatable stimuli (water, food solution, sucrose, and NaCl) and unpalatable stimuli (HCl and quinine) elicited reciprocal (excitatory vs. inhibitory) responses in type-2 neurons, whereas type-1 neurons showed positively correlated responses to specific combinations of stimuli such as food solution and NaCl, sucrose and HCl, NaCl and quinine, and HCl and quinine. 4. A tendency toward equalization of effectiveness in eliciting responses among the four basic taste stimuli was detected on the cortex. The ratios of mean evoked responses in 29 type-1 neurons in comparison with spontaneous rate (4.4 spikes/s) were 1.7, 1.9, 1.8, and 1.9 for sucrose, NaCl, HCl, and quinine, respectively. 5. The breadth of responsiveness to the four basic taste stimuli was quantified by means of the entropy measure introduced by Smith and Travers (33). The mean entropy value was 0.540 for 29 type-1 neurons, which was similar to 0.588 previously reported for rat chorda tympani fibers, suggesting that breadth of tuning is not more narrowly tuned in a higher level of the gustatory system in the rat. 6. Convergent inputs of other sensory modalities were detected exclusively in type-1 neurons. Thirteen (45%) of 29 type-1 neurons also responded to cold and/or warm water, but none of 6 type-2 neurons responded to thermal stimuli. Two (7%) of 29 type-1 neurons responded to almond and acetic acid odors, but the 6 type-2 neurons did not. Two (13%) of 16 type-1 neurons responded to interperitoneal injection of LiCl, which is known to induce gastrointestinal disorders, with a latency of approximately 5 min, but 4 type-2 neurons tested were not responsive to this stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Author(s):  
Cecilia Bouaichi ◽  
Roberto Vincis

ABSTRACTIn the last two decades, a considerable amount of work has been devoted to investigating the neural processing and dynamics of the primary taste cortex of rats. Surprisingly, much less information is available on cortical taste electrophysiology in awake mice, an animal model that is taking a more prominent role in taste research. Here we present electrophysiological evidence demonstrating how the gustatory cortex (GC) encodes information pertaining the basic taste qualities (sweet, salty, sour, and bitter) when stimuli are actively sampled through licking, the stereotyped behavior by which mice control the access of fluids in the mouth. Mice were trained to receive each stimulus on a fixed ratio schedule in which they had to lick a dry spout six times to receive a tastant on the seventh lick. Electrophysiological recordings confirmed that GC neurons encode both chemosensory and hedonic aspects of actively sampled tastants. In addition, our data revealed two other main findings; GC neurons encoded information about taste identity in as little as 120 ms. Consistent with the ability of GC neurons to rapidly encode taste information, nearly half of the recorded neurons exhibited spiking activity that was entrained to licking at rates up to 8 Hz. Overall, our results highlight how the GC of mice processes tastants when they are actively sensed through licking, reaffirming and expanding our knowledge on cortical taste processing.NEW & NOTEWORTHYRelatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes information of the qualities and hedonics of a broad panel of gustatory stimuli when tastants are actively sampled through licking. Our results show that the GC neurons broadly encode taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.


Sign in / Sign up

Export Citation Format

Share Document