Taste Perception and Cerebral Activity in the Human Gustatory Cortex Induced by Glucose, Fructose, and Sucrose Solutions

2019 ◽  
Vol 44 (7) ◽  
pp. 435-447 ◽  
Author(s):  
Thomas Mouillot ◽  
Sophie Barthet ◽  
Lucie Janin ◽  
Camille Creteau ◽  
Hervé Devilliers ◽  
...  

Abstract Glucose, fructose, and sucrose are important carbohydrates in Western diets with particular sweetness intensity and metabolisms. No study has compared their cerebral detection and their taste perception. Gustatory evoked potentials (GEPs), taste detection thresholds, intensity perception, and pleasantness were compared in response to glucose, fructose, and sucrose solutions at similar sweetness intensities and at identical molar concentrations. Twenty-three healthy subjects were randomly stimulated with 3 solutions of similar sweetness intensity (0.75 M of glucose, 0.47 M of fructose and 0.29 M of sucrose – sit. A), and with an identical molar concentration (0.29 M – sit. B). GEPs were recorded at gustatory cortex areas. Intensity perception and hedonic values of each solution were evaluated as were gustatory thresholds of the solutions. No significant difference was observed concerning the GEP characteristics of the solutions according to their sweetness intensities (sit. A) or their molar concentration (sit. B). In sit. A, the 3 solutions were perceived to have similar intensities and induced similar hedonic sensations. In sit. B, the glucose solution was perceived to be less intense and pleasant than the fructose and the sucrose solutions (P < 0.001) and the fructose solution was perceived to be less intense and pleasant than the sucrose (P < 0.001). Since GEP recordings were similar for glucose, fructose, and sucrose solutions whatever the concentrations, activation of same taste receptor induces similar cortical activation, even when the solutions were perceived differently. Sweet taste perception seems to be encoded by a complex chemical cerebral neuronal network.

1998 ◽  
Vol 13 (6) ◽  
pp. 303-309 ◽  
Author(s):  
I Berlin ◽  
L Givry-Steiner ◽  
Y Lecrubier ◽  
AJ Puech

SummaryAnhedonia may be considered as a transnosological feature of depression and schizophrenia. The aim of the present study was to assess hedonic responses to sucrose solutions and sweet taste perception threshold in patients with major depression and in schizophrenic patients in comparison with healthy subjects (matched for age and gender with depressive patients), and to compare these responses to evaluations by the Physical and Social Anhedonia scale of Chapman and the Pleasure Scale of Fawcett, generally used to quantify anhedonia. Hedonic responses to sucrose solutions were similar in patients with major depression (n = 20), schizophrenia (n = 20), and healthy controls (n = 20). Sweet taste perception threshold was significantly higher in depressive patients than in controls. Hedonic response to sucrose was inversely correlated with physical Anhedonia Scores and sweet taste perception threshold with Pleasure Scale scores. Measures of hedonia/anhedonia were not related with the intensity of depression or anxiety as measured by the Montgomery-Asberg Depression Rating Scale (MADRS) and Hamilton Anxiety Scale, respectively. In 11 depressed patients hospitalised for 17 to 33 days, neither hedonic ratings to sucrose solutions, sweet taste perception threshold, Physical, Social Anhedonia scores nor Pleasure Scale scores were modified in spite of substantial decrease in MADRS or Hamilton Anxiety scores. Hedonic responses to sucrose solutions and sweet taste perception threshold may be used as complementary evaluation to quantify anhedonia.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1425
Author(s):  
Jonas Yde Junge ◽  
Anne Sjoerup Bertelsen ◽  
Line Ahm Mielby ◽  
Yan Zeng ◽  
Yuan-Xia Sun ◽  
...  

Tastes interact in almost every consumed food or beverage, yet many aspects of interactions, such as sweet-sour interactions, are not well understood. This study investigated the interaction between sweetness from sucrose and sourness from citric and tartaric acid, respectively. A cross-cultural consumer study was conducted in China (n = 120) and Denmark (n = 139), respectively. Participants evaluated six aqueous samples with no addition (control), sucrose, citric acid, tartaric acid, or a mixture of sucrose and citric acid or sucrose and tartaric acid. No significant difference was found between citric acid and tartaric acid in the suppression of sweetness intensity ratings of sucrose. Further, sucrose suppressed sourness intensity ratings of citric acid and tartaric acid similarly. Culture did not impact the suppression of sweetness intensity ratings of citric or tartaric acid, whereas it did influence sourness intensity ratings. While the Danish consumers showed similar suppression of sourness by both acids, the Chinese consumers were more susceptible towards the sourness suppression caused by sucrose in the tartaric acid-sucrose mixture compared to the citric acid-sucrose mixture. Agglomerative hierarchical cluster analysis revealed clusters of consumers with significant differences in sweetness intensity ratings and sourness intensity ratings. These results indicate that individual differences in taste perception might affect perception of sweet-sour taste interactions, at least in aqueous solutions.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2359
Author(s):  
Nur Aida Md Tamrin ◽  
Ramlah Zainudin ◽  
Yuzine Esa ◽  
Halimah Alias ◽  
Mohd Noor Mat Isa ◽  
...  

Taste perception is an essential function that provides valuable dietary and sensory information, which is crucial for the survival of animals. Studies into the evolution of the sweet taste receptor gene (TAS1R2) are scarce, especially for Bornean endemic primates such as Nasalis larvatus (proboscis monkey), Pongo pygmaeus (Bornean orangutan), and Hylobates muelleri (Muller’s Bornean gibbon). Primates are the perfect taxa to study as they are diverse dietary feeders, comprising specialist folivores, frugivores, gummivores, herbivores, and omnivores. We constructed phylogenetic trees of the TAS1R2 gene for 20 species of anthropoid primates using four different methods (neighbor-joining, maximum parsimony, maximum-likelihood, and Bayesian) and also established the time divergence of the phylogeny. The phylogeny successfully separated the primates into their taxonomic groups as well as by their dietary preferences. Of note, the reviewed time of divergence estimation for the primate speciation pattern in this study was more recent than the previously published estimates. It is believed that this difference may be due to environmental changes, such as food scarcity and climate change, during the late Miocene epoch, which forced primates to change their dietary preferences. These findings provide a starting point for further investigation.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Lénia Rodrigues ◽  
Rosa Espanca ◽  
Ana Rodrigues Costa ◽  
Célia Miguel Antunes ◽  
Clarinda Pomar ◽  
...  

The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI) affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.


2009 ◽  
Vol 296 (4) ◽  
pp. R866-R876 ◽  
Author(s):  
Steven Zukerman ◽  
John I. Glendinning ◽  
Robert F. Margolskee ◽  
Anthony Sclafani

In addition to their well-known preference for sugars, mice and rats avidly consume starch-derived glucose polymers (e.g., Polycose). T1R3 is a component of the mammalian sweet taste receptor that mediates the preference for sugars and artificial sweeteners in mammals. We examined the role of the T1R3 receptor in the ingestive response of mice to Polycose and sucrose. In 60-s two-bottle tests, knockout (KO) mice preferred Polycose solutions (4–32%) to water, although their overall preference was lower than WT mice (82% vs. 94%). KO mice also preferred Polycose (0.5–32%) in 24-h two-bottle tests, although less so than WT mice at dilute concentrations (0.5–4%). In contrast, KO mice failed to prefer sucrose to water in 60-s tests. In 24-h tests, KO mice were indifferent to 0.5–8% sucrose, but preferred 16–32% sucrose; this latter result may reflect the post-oral effects of sucrose. Overall sucrose preference and intake were substantially less in KO mice than WT mice. However, when retested with 0.5–32% sucrose solutions, the KO mice preferred all sucrose concentrations, although they drank less sugar than WT mice. The experience-induced sucrose preference is attributed to a post-oral conditioned preference for the T1R3-independent orosensory features of the sugar solutions (odor, texture, T1R2-mediated taste). Chorda tympani nerve recordings revealed virtually no response to sucrose in KO mice, but a near-normal response to Polycose. These results indicate that the T1R3 receptor plays a critical role in the taste-mediated response to sucrose but not Polycose.


2017 ◽  
Vol 51 (4) ◽  
pp. 443-450 ◽  
Author(s):  
H. Ashi ◽  
C. Lara-Capi ◽  
G. Campus ◽  
G. Klingberg ◽  
P. Lingström

Dietary habits and, in particular, the intake frequency of sucrose are of major importance for the development of dental caries. The perception of sweet taste is believed to have an influence on sucrose intake and therefore affects the predisposition to dental caries. The aim was to study the caries experience and sweet taste perception and to further analyze the possible relationship between the 2 tested variables in 13- to 15-year-old children from 3 different geographical areas. A cross-sectional survey comprising 669 children (220 Italian, 224 Mexican, and 225 Saudi Arabian) was conducted. The children were examined in their school setting. A sweet taste perception level was determined by the sweet taste threshold (TT) and sweet taste preference (TP). The sweet test was performed with sucrose solutions varying in concentration from 1.63 to 821.52 g/L. The International Caries Detection and Assessment System (ICDAS) and DMFS indices were used to diagnose caries. The highest mean value for TT was found for Italian children followed by Saudi and Mexican. Saudi schoolchildren showed the highest mean values for TP and DMFS, followed by Italian and Mexican. A statistically significant difference for TP, TT, DMFS, and initial caries was found between the 3 countries. A weak yet positive correlation was found between taste perception (TT and TP) versus DMFS and manifest caries in all 3 countries (r = 0.137-0.313). The findings of the present study showed a variation in sweet taste perception between the 3 countries, which may influence the caries outcome of the children in the individual countries.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1491 ◽  
Author(s):  
Linda Eriksson ◽  
Anders Esberg ◽  
Simon Haworth ◽  
Pernilla Lif Holgerson ◽  
Ingegerd Johansson

Taste and diet preferences are complex and influenced by both environmental and host traits while affecting both food selection and associated health outcomes. The present study genotyped 94 single nucleotide polymorphisms (SNPs) in previously reported taste and food intake related genes and assessed associations with taste threshold (TT) and preferred intensity (PT) of sweet, sour and bitter, food preferences, habitual diet intake, and caries status in healthy young Swedish men and women (n = 127). Polymorphisms in the GNAT3, SLC2A4, TAS1R1 and TAS1R2 genes were associated with variation in TT and PT for sweet taste as well as sweet food intake. Increasing PT for sweet was associated with increasing preference and intake of sugary foods. Similarly, increasing TT for sour was associated with increasing intake of sour foods, whereas the associations between food preference/intake and TT/PT for bitter was weak in this study group. Finally, allelic variation in the GNAT3, SLC2A2, SLC2A4, TAS1R1 and TAS1R2 genes was associated with caries status, whereas TT, PT and food preferences were not. It was concluded that variations in taste receptor, glucose transporter and gustducin encoding genes are related to taste perception, food preference and intake as well as the sugar-dependent caries disease.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 990 ◽  
Author(s):  
Elie Chamoun ◽  
Nicholas Carroll ◽  
Lisa Duizer ◽  
Wenjuan Qi ◽  
Zeny Feng ◽  
...  

Taste is a fundamental determinant of food selection, and inter-individual variations in taste perception may be important risk factors for poor eating habits and obesity. Characterizing differences in taste perception and their influences on dietary intake may lead to an improved understanding of obesity risk and a potential to develop personalized nutrition recommendations. This study explored associations between 93 single nucleotide polymorphisms (SNPs) in sweet, fat, bitter, salt, sour, and umami taste receptors and psychophysical measures of taste. Forty-four families from the Guelph Family Health Study participated, including 60 children and 65 adults. Saliva was collected for genetic analysis and parents completed a three-day food record for their children. Parents underwent a test for suprathreshold sensitivity (ST) and taste preference (PR) for sweet, fat, salt, umami, and sour as well as a phenylthiocarbamide (PTC) taste status test. Children underwent PR tests and a PTC taste status test. Analysis of SNPs and psychophysical measures of taste yielded 23 significant associations in parents and 11 in children. After adjusting for multiple hypothesis testing, the rs713598 in the TAS2R38 bitter taste receptor gene and rs236514 in the KCNJ2 sour taste-associated gene remained significantly associated with PTC ST and sour PR in parents, respectively. In children, rs173135 in KCNJ2 and rs4790522 in the TRPV1 salt taste-associated gene remained significantly associated with sour and salt taste PRs, respectively. A multiple trait analysis of PR and nutrient composition of diet in the children revealed that rs9701796 in the TAS1R2 sweet taste receptor gene was associated with both sweet PR and percent energy from added sugar in the diet. These findings provide evidence that for bitter, sour, salt, and sweet taste, certain genetic variants are associated with taste function and may be implicated in eating patterns. (Support was provided by the Ontario Ministry of Agriculture, Food, and Rural Affairs).


2021 ◽  
Vol 118 (4) ◽  
pp. e2021516118
Author(s):  
Hengwu Jiao ◽  
Huan-Wang Xie ◽  
Libiao Zhang ◽  
Nima Zhuoma ◽  
Peihua Jiang ◽  
...  

The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2. Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2015 ◽  
Author(s):  
Edward J. Szczygiel ◽  
Sungeun Cho ◽  
Robin M. Tucker

Short sleep duration increases preferences for high-carbohydrate and high-fat foods. It is unclear if insufficient sleep-induced changes in food preference are mediated by changes in taste perception and if these changes are related to sweetener type (sucrose or sucralose) or sweet liking phenotype. The primary objective of this study was to determine if sleep curtailment results in changes in sweet taste perception after sleep curtailment. Forty participants used a single-channel electroencephalograph to record both a habitual and curtailed night (33% reduction) of sleep at home. The following morning, multiple dimensions of sweet taste perception were measured, including preferred sweetener concentrations, patterns of sweet liking, and intensity perception over a range of concentrations. After curtailment, a significant increase in preferred concentration for both sucrose and sucralose (p < 0.001 for both) was observed. The slope of sucrose sweet liking increased after curtailment (p = 0.001). The slope of sucralose liking also increased, but this was not significant (p = 0.129). Intensity perception of the sweeteners was not altered by curtailment. Hierarchical cluster analysis was used to classify participants by sweet liking phenotype. Phenotypes were found to predict preferred sweetener concentration. These findings illustrate a possible need to control for sleep in food sensory studies and suggest a potential mechanism by which insufficient sleep can lead to excess energy intake.


Sign in / Sign up

Export Citation Format

Share Document