scholarly journals A genome-wide scan statistic framework for whole-genome sequence data analysis

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zihuai He ◽  
Bin Xu ◽  
Joseph Buxbaum ◽  
Iuliana Ionita-Laza
2017 ◽  
Author(s):  
◽  
Wouter Van Rheenen ◽  
Sara L. Pulit ◽  
Annelot M. Dekker ◽  
Ahmad Al Khleifat ◽  
...  

AbstractThe most recent genome-wide association study in amyotrophic lateral sclerosis (ALS) demonstrates a disproportionate contribution from low-frequency variants to genetic susceptibility of disease. We have therefore begun Project MinE, an international collaboration that seeks to analyse whole-genome sequence data of at least 15,000 ALS patients and 7,500 controls. Here, we report on the design of Project MinE and pilot analyses of newly whole-genome sequenced 1,264 ALS patients and 611 controls drawn from the Netherlands. As has become characteristic of sequencing studies, we find an abundance of rare genetic variation (minor allele frequency < 0.1 %), the vast majority of which is absent in public data sets. Principal component analysis reveals local geographical clustering of these variants within The Netherlands. We use the whole-genome sequence data to explore the implications of poor geographical matching of cases and controls in a sequence-based disease study and to investigate how ancestry-matched, externally sequenced controls can induce false positive associations. Also, we have publicly released genome-wide minor allele counts in cases and controls, as well as results from genic burden tests.


Author(s):  
Amnon Koren ◽  
Dashiell J Massey ◽  
Alexa N Bracci

Abstract Motivation Genomic DNA replicates according to a reproducible spatiotemporal program, with some loci replicating early in S phase while others replicate late. Despite being a central cellular process, DNA replication timing studies have been limited in scale due to technical challenges. Results We present TIGER (Timing Inferred from Genome Replication), a computational approach for extracting DNA replication timing information from whole genome sequence data obtained from proliferating cell samples. The presence of replicating cells in a biological specimen leads to non-uniform representation of genomic DNA that depends on the timing of replication of different genomic loci. Replication dynamics can hence be observed in genome sequence data by analyzing DNA copy number along chromosomes while accounting for other sources of sequence coverage variation. TIGER is applicable to any species with a contiguous genome assembly and rivals the quality of experimental measurements of DNA replication timing. It provides a straightforward approach for measuring replication timing and can readily be applied at scale. Availability and Implementation TIGER is available at https://github.com/TheKorenLab/TIGER. Supplementary information Supplementary data are available at Bioinformatics online


Data in Brief ◽  
2020 ◽  
Vol 33 ◽  
pp. 106416
Author(s):  
Asset Daniyarov ◽  
Askhat Molkenov ◽  
Saule Rakhimova ◽  
Ainur Akhmetova ◽  
Zhannur Nurkina ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lynsey K. Whitacre ◽  
Jesse L. Hoff ◽  
Robert D. Schnabel ◽  
Sara Albarella ◽  
Francesca Ciotola ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 25-25
Author(s):  
Muhammad Yasir Nawaz ◽  
Rodrigo Pelicioni Savegnago ◽  
Cedric Gondro

Abstract In this study, we detected genome wide footprints of selection in Hanwoo and Angus beef cattle using different allele frequency and haplotype-based methods based on imputed whole genome sequence data. Our dataset included 13,202 Angus and 10,437 Hanwoo animals with 10,057,633 and 13,241,550 imputed SNPs, respectively. A subset of data with 6,873,624 common SNPs between the two populations was used to estimate signatures of selection parameters, both within (runs of homozygosity and extended haplotype homozygosity) and between (allele fixation index, extended haplotype homozygosity) the breeds in order to infer evidence of selection. We observed that correlations between various measures of selection ranged between 0.01 to 0.42. Assuming these parameters were complementary to each other, we combined them into a composite selection signal to identify regions under selection in both beef breeds. The composite signal was based on the average of fractional ranks of individual selection measures for every SNP. We identified some selection signatures that were common between the breeds while others were independent. We also observed that more genomic regions were selected in Angus as compared to Hanwoo. Candidate genes within significant genomic regions may help explain mechanisms of adaptation, domestication history and loci for important traits in Angus and Hanwoo cattle. In the future, we will use the top SNPs under selection for genomic prediction of carcass traits in both breeds.


BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Shuto Hayashi ◽  
Rui Yamaguchi ◽  
Shinichi Mizuno ◽  
Mitsuhiro Komura ◽  
Satoru Miyano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document