scholarly journals Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong Ao ◽  
Guillaume Dupont-Nivet ◽  
Eelco J. Rohling ◽  
Peng Zhang ◽  
Jean-Baptiste Ladant ◽  
...  

Abstract The first major build-up of Antarctic glaciation occurred in two consecutive stages across the Eocene–Oligocene transition (EOT): the EOT-1 cooling event at ~34.1–33.9 Ma and the Oi-1 glaciation event at ~33.8–33.6 Ma. Detailed orbital-scale terrestrial environmental responses to these events remain poorly known. Here we present magnetic and geochemical climate records from the northeastern Tibetan Plateau margin that are dated precisely from ~35.5 to 31 Ma by combined magneto- and astro-chronology. These records suggest a hydroclimate transition at ~33.7 Ma from eccentricity dominated cycles to oscillations paced by a combination of eccentricity, obliquity, and precession, and confirm that major Asian aridification and cooling occurred at Oi-1. We conclude that this terrestrial orbital response transition coincided with a similar transition in the marine benthic δ18O record for global ice volume and deep-sea temperature variations. The dramatic reorganization of the Asian climate system coincident with Oi-1 was, thus, a response to coeval atmospheric CO2 decline and continental-scale Antarctic glaciation.

2020 ◽  
Author(s):  
Anna Joy Drury ◽  
Thomas Westerhold ◽  
David Hodell ◽  
Sarah White ◽  
Ana Christina Ravelo ◽  
...  

<p>Accurate stable isotope stratigraphies are essential for understanding how past climates are influenced by orbital forcing. Deep-sea benthic foraminiferal δ<sup>18</sup>O and δ<sup>13</sup>C stratigraphies can provide precise astronomical age control and record changes in past deep-sea ocean temperatures, global ice volume and the carbon cycle. Our understanding of Plio-Pleistocene climate dynamics has improved through the development of global (LR04; Lisiecki & Raymo, 2005) and regional stacks (Ceara Rise; Wilkens et al., 2017). However, the late Miocene climate system remains poorly understood, in part because the late Miocene benthic foraminiferal δ<sup>18</sup>O stratigraphy is notoriously low amplitude.</p><p>Here, we present the first global late Miocene global benthic foraminiferal δ<sup>18</sup>O compilation spanning 8.00-5.33 Ma. We formed a “Base Stack” using six continuous benthic stratigraphies from the Atlantic (ODP Sites 982 (N), 926 (E) and 1264 (S)) and Pacific Oceans (IODP Sites U1337 and U1338 (E), ODP Site 1146 (W)). To avoid misidentification of individual excursions between sites, we verified existing splices, generated isotope data where necessary and established independent astrochronologies. To accompany the “Base Stack”, we compiled a “Comprehensive Stack”, which incorporates single-hole benthic δ<sup>18</sup>O stratigraphies to optimise global coverage.</p><p>The new global late Miocene benthic foraminiferal δ<sup>18</sup>O stack represents a stratigraphic reference section back to 8.00 Ma. The stack is accurately tied to the Geomagnetic Polarity Time Scale between Chrons C3r and C4n.2n using the magnetostratigraphy from IODP Site U1337. We recognise 68 new δ<sup>18</sup>O Marine Isotope Stages (MIS) between 7.7 and 6.5 Ma. An exceptional global response is imprinted on the dispersed sites between 7.7-6.9 & 6.4-5.4 Ma, when a strong 40 kyr heartbeat dominates the climate system. The origin of these cycles remains unclear. The influence of deep-sea temperature on the benthic δ<sup>18</sup>O stack is explored at IODP Site U1337 using Mg/Ca data. The dominant 40-kyr δ<sup>18</sup>O cycles are asymmetric, suggesting at least a partial ice volume imprint and raising the possibility that these cycles relate to early signs of northern hemisphere glaciation.</p>


2017 ◽  
Vol 114 (15) ◽  
pp. 3867-3872 ◽  
Author(s):  
Diederik Liebrand ◽  
Anouk T. M. de Bakker ◽  
Helen M. Beddow ◽  
Paul A. Wilson ◽  
Steven M. Bohaty ◽  
...  

Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene−Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial−interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical—indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions.


2000 ◽  
Vol 54 (3) ◽  
pp. 309-320 ◽  
Author(s):  
Jimin Sun ◽  
Tungsheng Liu

Uplift of the Tibetan Plateau is manifest not only in widespread denudation, but also by an increased deposition rate of sediment, near or far from the exhumed regions. Our results indicate that the mass accumulation rate (MAR) of eolian dust increased between ∼1.1 and ∼0.9 myr ago. We associate this increase in MAR and median grain size with uplift of the Tibetan Plateau and its adjacent regions during this period. This Middle Pleistocene uplift can also be evidenced by the age of volcanism in the marginal region, the existence of thick conglomerate deposits surrounding the uplifted plateau, and the increased sedimentation rate of lacustrine deposits in the Qaidam Basin (northeastern Tibetan Plateau) between ∼1.1 and ∼0.9 myr ago. The correlation between the loess and marine records indicates that after ∼0.9 myr ago, these two records correlate well. This good correlation probably suggest that the Middle Pleistocene upheaval event not only brought the plateau into the cryosphere, but also enhanced the coupling of regional-scale Chinese loess transportation and deposition to the global ice volume variations through its effects on glacial grinding, rock denudation, and east Asian monsoonal circulation.


2010 ◽  
Vol 105 (1-2) ◽  
pp. 51-63 ◽  
Author(s):  
Guobao Xu ◽  
Tuo Chen ◽  
Xiaohong Liu ◽  
Liya Jin ◽  
Wenling An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document