geomagnetic polarity time scale
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 18)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Yutaka Yoshimura ◽  
Osamu Ishizuka ◽  
Toshitsugu Yamazaki ◽  
Yuhji Yamamoto ◽  
Hyeon-Seon Ahn ◽  
...  

Abstract The Earth's core is constantly and efficiently cooled by mantle convection. The heat flux transferred from the core to the mantle through the core-mantle boundary (CMB) is critical for understanding the dynamics of solid Earth. Although it is difficult to estimate the CMB heat flux, its history could be reconstructed from geomagnetic reversal frequency. However, overlooked short geomagnetic reversals may exist in the geomagnetic polarity time scale (GPTS), which affects the estimation of the heat flux history. Here, we report four new high-precision 40Ar/39Ar ages of the Oligocene Ethiopian traps. The traps may contain undiscovered reversals in marine magnetic anomaly. Based on the ages, we identified new reversals in Chron C12n, which was not found in marine magnetic anomalies. Our non-parametric analysis of GPTS suggests four potential periods of missing geomagnetic reversals, which correspond to long polarity intervals in GPTS. We found that C12n correspond to one of the periods. This indicates that several undetected reversals may exist within or near the edge of long polarity intervals after the Cretaceous Normal Superchron (prolonged stable polarity period). Considering the undetected reversals, we conclude that the CMB heat flux increased more slowly and monotonically after the Superchron than that ever estimated.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Elisabeth Schnepp ◽  
Patrick Arneitz ◽  
Morgan Ganerød ◽  
Robert Scholger ◽  
Ingomar Fritz ◽  
...  

AbstractPliocene volcanic rocks from south-east Austria were paleomagnetically investigated. Samples were taken from 28 sites located on eight different volcanoes. Rock magnetic investigations revealed that magnetic carriers are Ti-rich or Ti-poor titanomagnetites with mainly pseudo-single-domain characteristics. Characteristic remanent magnetization directions were obtained from alternating field as well as from thermal demagnetization. Four localities give reversed directions agreeing with the expected direction from secular variation. Another four localities of the Klöch–Königsberg volcanic complex (3) and the Neuhaus volcano (1) have reversed directions with shallow inclinations and declinations of about 240° while the locality Steinberg yields a positive inclination of about 30° and 200° declination. These aberrant directions cannot be explained by local or regional tectonic movements. All virtual geomagnetic pole positions are located on the southern hemisphere. Four virtual geomagnetic poles lie close to the geographic pole, while all others are concentrated in a narrow longitude sector offshore South America (310°–355°) with low virtual geomagnetic pole latitudes ranging from − 15° to − 70°. The hypothesis that a transitional geomagnetic field configuration was recorded during the short volcanic activity of these five localities is supported by 9 paleointensity results and 39Ar/40Ar dating. Virtual geomagnetic dipole moments range from 1.1 to 2.9·1022 Am2 for sites with low VGP latitudes below about 60° and from 3.0 to 9.3·1022 Am2 for sites with higher virtual geomagnetic pole latitudes. The new 39Ar/40Ar ages of 2.51 ± 0.27 Ma for Klöch and 2.39 ± 0.03 Ma for Steinberg allow for the correlation of the Styrian transitional directions with cryptochron C2r.2r-1 of the geomagnetic polarity time scale. Graphic abstract


Geosphere ◽  
2021 ◽  
Author(s):  
Giovanny Jiménez ◽  
Helbert García-Delgado ◽  
John W. Geissman

We report paleomagnetic results from the Jurassic to Lower Cretaceous continental sedimentary succession exposed in the eastern limb of the Los Yariguíes anticlinorium, Eastern Cordillera, Colombia. About 820 m of a strati­graphic section of the upper part of the Girón Group (Angostura del Río Lebrija and Los Santos Formations) was sampled to construct a magnetic polarity stratigraphy. A total of 199 independent samples that yield interpretable and acceptable data have a characteristic remanent magnetization component (ChRM) isolated between 400 °C and 680 °C in progressive thermal demagneti­zation. Demagnetization behavior and rock magnetic properties are interpreted to indicate that hematite is the principal magnetization carrier with a possible contribution by magnetite in some parts of the section. After tilt correction, 123 samples are of normal polarity (declination [D] = 44.9°, inclination [I] = +9.7°, R = 110.64, k = 9.87, and α95 = 4.3°), and the other 76 accepted samples are of reverse polarity (D = 216.4°, I = −6.1°, R = 68.29, k = 9.72, and α95 = 5.5°). The sta­tistical reversal test conducted on virtual geomagnetic poles is positive (class B). Based on paleontologic age estimates for the Cumbre and Rosablanca Formations, we assume a Berriasian age for the Los Santos Formation. The magnetostratigraphic data from the Girón Group strata are interpreted to suggest an age for the sampled part of the section between early Kimmerid­gian and early Valanginian (ca. 157–139 Ma). The age of the Angostura del Río Lebrija Formation is estimated as between early Kimmeridgian and early Tithonian (ca. 157–146.5 Ma). The age of the Los Santos Formation is esti­mated between early Tithonian and early Valanginian (146.5–139.3 Ma). With our proposed, but nonunique, correlation with the Geomagnetic Polarity Time Scale, the Jurassic-Cretaceous boundary is interpreted to be located within the Los Santos Formation. The Girón Group is characterized by two periods of high (>8 cm/k.y.) and two periods of low (< 2 cm/k.y.) sedimentation rates. An inferred clockwise rotation of ~44°, based on paleomagnetic declination data from the Girón Group, is similar to rotation estimates reported in some previous studies in the general area, and this facet of deformation could be related to local and regional response to displacement along regional-scale strike-slip faults.


Geology ◽  
2021 ◽  
Author(s):  
Min Zhang ◽  
Hua-Feng Qin ◽  
Kuang He ◽  
Yi-Fei Hou ◽  
Quan-Feng Zheng ◽  
...  

The end-Permian mass extinction (EPME) has been recorded as the most severe biodiversity crisis in Earth’s history, although the timing of the marine and terrestrial extinctions remains debatable. We present a new high-resolution magnetostratigraphic succession across the EPME and the Permian-Triassic boundary (PTB) from the Meishan sections in southeastern China, which contain the global boundary stratotype section and point (GSSP) for the base of the Triassic (also the Induan Stage) and the base of the Changhsingian Stage. We identified five normal and five reverse magnetozones, including MS1n to MS5n and MS1r to MS5r, from oldest to youngest, in the Changhsingian and Induan Stages. The Induan Stage was determined to consist of two polarity intervals, where the upper one is reverse (MS5r), and the lower one is normal (MS5n). The Changhsingian Stage is dominated by normal polarity, intercalated with four short-term reverse magnetozones (MS1r to MS4r). Consequently, the PTB and the Wuchiapingian-Changhsingian boundary are clearly located in MS5n and MS1n, respectively. These new magnetostratigraphic results provide a potential reference geomagnetic polarity pattern with which to refine the geomagnetic polarity time scale for the EPME and the Permian-Triassic transition.


2021 ◽  
Author(s):  
Annique van der Boon ◽  
Andy Biggin ◽  
Daniele Thallner ◽  
Mark Hounslow ◽  
Jerzy Nawrocki ◽  
...  

<p>The Devonian has long been a problematic era for paleomagnetism. Devonian data are generally difficult to interpret and have complex partial or full overprints. These problems arise from paleomagnetic data obtained from both sedimentary and igneous rocks. As a result, the reconstruction of motions of tectonic plates is often troubling, as these rely on apparent polar wander paths constructed from Devonian paleomagnetic poles. Also the geomagnetic polarity time scale for this time period is poorly constrained. Paleointensity studies suggest that the field was much weaker than the field of today, and it has been hypothesised that this was accompanied by many polarity reversals (a hyperreversing field). We review studies on Devonian paleopoles, magnetostratigraphy and paleointensity. We tentatively suggest that the field during the Devonian might have been so weak and perhaps of a non-dipolar configuration, that obtaining reliable paleomagnetic data from Devonian rocks is extremely difficult.  In order to push forward the understanding of the Devonian field, we emphasise the need for studies to provide fully accessible data down to specimen level demagnetisation diagrams. Incorporating all data, no matter how complex or bad they might seem, is the only way to advance the understanding of the Devonian magnetic field. Recent paleointensity studies appear to suggest that the Devonian and Ediacaran were both extreme weak field intervals. For the Ediacaran, it has been hypothesised that the field had an impact on life on earth. A fundamentally weak and perhaps non-dipolar field during the Devonian might have had an influence on evolution and extinctions. As there is a large number of biological crises in the Devonian, we here pose the question whether the Earth’s magnetic field was a contributing factor to these crises. New independent evidence from the Devonian-Carboniferous boundary suggests that the Hangenberg event was caused by increased UV-B radiation, which is in line with a weak magnetic field.</p>


2021 ◽  
Author(s):  
Annique van der Boon ◽  
Andy Biggin ◽  
Daniele Thallner ◽  
Mark Hounslow ◽  
Jerzy Nawrocki ◽  
...  

<p>The global polarity time scale (GPTS) is relatively unconstrained for the Paleozoic, particularly the Devonian. Constraining the GPTS and reversal frequency for the Devonian is crucial for the understanding of the behaviour of Earth’s magnetic field. Furthermore, construction of a GPTS for the Paleozoic could provide a valuable tool for age determination in other studies. However, most paleomagnetic data from the Devonian is problematic. The data are difficult to interpret and don’t have a single easy to resolve (partial or full) overprint. Paleointensity studies suggest that the field was much weaker than the field of today, which could have been accompanied by many reversals (a hyperreversing field). In order to improve the geomagnetic polarity time scale in the Devonian, and quantify the number of reversals in this time, we sampled three Devonian sections in Germany, Poland and Canada. These sections show evidence that the rocks were not significantly heated, and they show little evidence for remineralisation. This minimises the chance the rocks were remagnetised after the Devonian. Our data show that even when rocks are well qualified to have reliably recorded the Devonian field, the interpretation is not straightforward. We also discuss problems with the Devonian GPTS as presented in the geologic timescale.</p>


2020 ◽  
Vol 8 ◽  
Author(s):  
Luigi Jovane ◽  
Fabio Florindo ◽  
Gary Wilson ◽  
Stephanie de Almeida Pecchiai Saldanha Leone ◽  
Muhammad Bin Hassan ◽  
...  

New paleomagnetic results from the late Eocene-Middle Miocene samples from Deep Sea Drilling Project Site 274, cored during Leg 28 on the continental rise off Victoria Land, Ross Sea, provide a chronostratigraphic framework for an existing paleoclimate archive during a key period of Antarctic climate and ice sheet evolution. Based on this new age model, the cored late Eocene-Middle Miocene sequence covers an interval of almost 20 Myr (from ∼35 to ∼15 Ma). Biostratigraphic constraints allow a number of possible correlations with the Geomagnetic Polarity Time Scale. Regardless of correlation, average interval sediment accumulation rates above 260 mbsf are ∼6 cm/kyr with the record punctuated by a number of unconformities. Below 260 mbsf (across the Eocene/Oligocene boundary) interval, sedimentation accumulation rates are closer to ∼1 cm/kyr. A major unconformity identified at ∼180 mbsf represents at least 9 Myr accounting for the late Oligocene and Early Miocene and represent non-deposition and/or erosion due to intensification of Antarctic Circumpolar Current activity. Significant fluctuations in grain size and magnetic properties observed above the unconformity at 180 mbsf, in the Early Miocene portion of this sedimentary record, reflect cyclical behavior in glacial advance and retreat from the continent. Similar glacial cyclicity has already been identified in other Miocene sequences recovered in drill cores from the Antarctic margin.


2020 ◽  
Author(s):  
Daniel J. Peppe ◽  
David A.D. Evans ◽  
Mark Beech ◽  
Andrew Hill ◽  
Faysal Bibi

The Baynunah Formation in the Al Gharbia region of Abu Dhabi Emirate was deposited by a major fluvial system and preserves the only known late Miocene terrestrial fossils in the Arabian Peninsula. We analyzed paleomagnetic samples from six sections (Jebel Barakah, Shuwaihat 2, Hamra 5, Mleisa 1, Mleisa 2, and Kihal 2) to develop a polarity stratigraphy for the Baynunah Formation. Based on these analyses, we documented a magnetic polarity stratigraphy, which, in combination with lithostratigraphy, allows us to propose a correlation of these six sections and their fossil localities. We show that first-order facies variations in the Baynunah Formation are diachronous. Confident correlations with the Geomagnetic Polarity Time Scale during the late Miocene cannot be determined; however, correlations based on the local polarity stratigraphy and biostratigraphy suggests that the Baynunah Formation was deposited over a duration of less than 750 kyr between ~7.7 and ~7.0 Ma during the late Tortonian and early Messinian. These results suggest that the fossil sites occurring throughout the lower part of the Baynunah unit and the fossil trackway sites found in the upper part of the formation are likely no more than a few hundred thousand years apart and could have been generated by the same taxa.


Sign in / Sign up

Export Citation Format

Share Document