scholarly journals Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuqiong Sun ◽  
Shuting Liu ◽  
Luyi Sun ◽  
Shuangshuang Wu ◽  
Guangqi Hu ◽  
...  

Abstract Room temperature phosphorescence materials have inspired extensive attention owing to their great potential in optical applications. However, it is hard to achieve a room temperature phosphorescence material with simultaneous long lifetime and high phosphorescence quantum efficiency. Herein, multi-confined carbon dots were designed and fabricated, enabling room temperature phosphorescence material with simultaneous ultralong lifetime, high phosphorescence quantum efficiency, and excellent stability. The multi-confinement by a highly rigid network, stable covalent bonding, and 3D spatial restriction efficiently rigidified the triplet excited states of carbon dots from non-radiative deactivation. The as-designed multi-confined carbon dots exhibit ultralong lifetime of 5.72 s, phosphorescence quantum efficiency of 26.36%, and exceptional stability against strong oxidants, acids and bases, as well as polar solvents. This work provides design principles and a universal strategy to construct metal-free room temperature phosphorescence materials with ultralong lifetime, high phosphorescence quantum efficiency, and high stability for promising applications, especially under harsh conditions.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jinzhu Cao ◽  
Meng Zhang ◽  
Manjeet Singh ◽  
Zhongfu An ◽  
Lingfei Ji ◽  
...  

Recently, there has been remarkable progress of the host-guest doped pure organic room-temperature phosphorescence (RTP) materials. However, it remains a great challenge to develop highly efficient host-guest doping systems. In this study, we have successfully developed a heavy atom free pure organic molecular doped system (benzophenone-thianthrene, respectively) with efficient RTP through a simple host-guest doping strategy. Furthermore, by optimizing the doping ratios, the host-guest material with a molar ratio of 100:1 presented an efficient RTP emission with 46% quantum efficiency and a long lifetime of up to 9.17 ms under ambient conditions. This work will provide an effective way to design new organic doping systems with RTP.


2015 ◽  
Vol 3 (12) ◽  
pp. 2798-2801 ◽  
Author(s):  
Xinwei Dong ◽  
Liangming Wei ◽  
Yanjie Su ◽  
Zhongli Li ◽  
Huijuan Geng ◽  
...  

Carbon dot composite powders show long phosphorescence lifetimes when the carbon dots are dispersed into a potash alum matrix.


2021 ◽  
Vol 417 ◽  
pp. 129175
Author(s):  
Shenghui Han ◽  
Gang Lian ◽  
Xu Zhang ◽  
Zhaozhen Cao ◽  
Qilong Wang ◽  
...  

Author(s):  
Jian-Ce Jin ◽  
Yang-Peng Lin ◽  
Yi-Heng Wu ◽  
Liaokuo Gong ◽  
Nan-Nan Shen ◽  
...  

Two chlorobismuthate hybrids incorportating ionic liquid cations (ILCs) with second-level room-temperature phosphorescence (RTP) were obtained, namely [Emim]BiCl4(bp2do) (1) and [Emmim]BiCl4(bp2do) (2) (Emim = 1-ethyl-3-methylimidazolium, Emmim = 1-ethyl-2,3-dimethylimidazolium, bp2do = 2,2'-bipyridyl-1,1'-dioxide)....


Author(s):  
Xiaoqing Liu ◽  
Wenbo Dai ◽  
Qian Junjie ◽  
Yunxiang Lei ◽  
Miaochang Liu ◽  
...  

A new doped system with pure phosphorescent emission is constructed using four 1-(4-(diphenylamino)phenyl)-2-phenylethan-1-one derivatives containing halogen atoms as the guests and benzophenone as the host. That is, the doped system...


2021 ◽  
Author(s):  
Jian Qu ◽  
Xin Zhang ◽  
Zhong-Jie Wang ◽  
Shuyan Zhang ◽  
Yejian Yu ◽  
...  

Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive...


Sign in / Sign up

Export Citation Format

Share Document