scholarly journals Exceptional non-Hermitian topological edge mode and its application to active matter

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuki Sone ◽  
Yuto Ashida ◽  
Takahiro Sagawa

AbstractTopological materials exhibit edge-localized scattering-free modes protected by their nontrivial bulk topology through the bulk-edge correspondence in Hermitian systems. While topological phenomena have recently been much investigated in non-Hermitian systems with dissipations and injections, the fundamental principle of their edge modes has not fully been established. Here, we reveal that, in non-Hermitian systems, robust gapless edge modes can ubiquitously appear owing to a mechanism that is distinct from bulk topology, thus indicating the breakdown of the bulk-edge correspondence. The robustness of these edge modes originates from yet another topological structure accompanying the branchpoint singularity around an exceptional point, at which eigenvectors coalesce and the Hamiltonian becomes nondiagonalizable. Their characteristic complex eigenenergy spectra are applicable to realize lasing wave packets that propagate along the edge of the sample. We numerically confirm the emergence and the robustness of the proposed edge modes in the prototypical lattice models. Furthermore, we show that these edge modes appear in a model of chiral active matter based on the hydrodynamic description, demonstrating that active matter can exhibit an inherently non-Hermitian topological feature. The proposed general mechanism would serve as an alternative designing principle to realize scattering-free edge current in non-Hermitian devices, going beyond the existing frameworks of non-Hermitian topological phases.

2019 ◽  
Vol 100 (15) ◽  
Author(s):  
Wei Tang ◽  
X. C. Xie ◽  
Lei Wang ◽  
Hong-Hao Tu

2019 ◽  
Vol 21 (11) ◽  
pp. 112001 ◽  
Author(s):  
Tomer Markovich ◽  
Elsen Tjhung ◽  
Michael E Cates

2015 ◽  
Vol 112 (47) ◽  
pp. 14495-14500 ◽  
Author(s):  
Lisa M. Nash ◽  
Dustin Kleckner ◽  
Alismari Read ◽  
Vincenzo Vitelli ◽  
Ari M. Turner ◽  
...  

Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial—composed of coupled gyroscopes on a lattice—that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides.


2021 ◽  
Vol 118 (39) ◽  
pp. e2107461118
Author(s):  
Kazusa Beppu ◽  
Ziane Izri ◽  
Tasuku Sato ◽  
Yoko Yamanishi ◽  
Yutaka Sumino ◽  
...  

Bacterial suspensions show turbulence-like spatiotemporal dynamics and vortices moving irregularly inside the suspensions. Understanding these ordered vortices is an ongoing challenge in active matter physics, and their application to the control of autonomous material transport will provide significant development in microfluidics. Despite the extensive studies, one of the key aspects of bacterial propulsion has remained elusive: The motion of bacteria is chiral, i.e., it breaks mirror symmetry. Therefore, the mechanism of control of macroscopic active turbulence by microscopic chirality is still poorly understood. Here, we report the selective stabilization of chiral rotational direction of bacterial vortices in achiral circular microwells sealed by an oil/water interface. The intrinsic chirality of bacterial swimming near the top and bottom interfaces generates chiral collective motions of bacteria at the lateral boundary of the microwell that are opposite in directions. These edge currents grow stronger as bacterial density increases, and, within different top and bottom interfaces, their competition leads to a global rotation of the bacterial suspension in a favored direction, breaking the mirror symmetry of the system. We further demonstrate that chiral edge current favors corotational configurations of interacting vortices, enhancing their ordering. The intrinsic chirality of bacteria is a key feature of the pairing order transition from active turbulence, and the geometric rule of pairing order transition may shed light on the strategy for designing chiral active matter.


2016 ◽  
Vol 164 (4) ◽  
pp. 810-841 ◽  
Author(s):  
Alessandro Manacorda ◽  
Carlos A. Plata ◽  
Antonio Lasanta ◽  
Andrea Puglisi ◽  
Antonio Prados

Author(s):  
R. J. Wilson ◽  
D. D. Chambliss ◽  
S. Chiang ◽  
V. M. Hallmark

Scanning tunneling microscopy (STM) has been used for many atomic scale observations of metal and semiconductor surfaces. The fundamental principle of the microscope involves the tunneling of evanescent electrons through a 10Å gap between a sharp tip and a reasonably conductive sample at energies in the eV range. Lateral and vertical resolution are used to define the minimum detectable width and height of observed features. Theoretical analyses first discussed lateral resolution in idealized cases, and recent work includes more general considerations. In all cases it is concluded that lateral resolution in STM depends upon the spatial profile of electronic states of both the sample and tip at energies near the Fermi level. Vertical resolution is typically limited by mechanical and electronic noise.


1879 ◽  
Vol 8 (208supp) ◽  
pp. 3313-3313
Author(s):  
M. Dubrunfaut
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document