scholarly journals The transcriptome of circulating sexually committed Plasmodium falciparum ring stage parasites forecasts malaria transmission potential

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Surendra K. Prajapati ◽  
Ruth Ayanful-Torgby ◽  
Zuleima Pava ◽  
Michelle C. Barbeau ◽  
Festus K. Acquah ◽  
...  

AbstractMalaria is spread by the transmission of sexual stage parasites, called gametocytes. However, with Plasmodium falciparum, gametocytes can only be detected in peripheral blood when they are mature and transmissible to a mosquito, which complicates control efforts. Here, we identify the set of genes overexpressed in patient blood samples with high levels of gametocyte-committed ring stage parasites. Expression of all 18 genes is regulated by transcription factor AP2-G, which is required for gametocytogenesis. We select three genes, not expressed in mature gametocytes, to develop as biomarkers. All three biomarkers we validate in vitro using 6 different parasite lines and develop an algorithm that predicts gametocyte production in ex vivo samples and volunteer infection studies. The biomarkers are also sensitive enough to monitor gametocyte production in asymptomatic P. falciparum carriers allowing early detection and treatment of infectious reservoirs, as well as the in vivo analysis of factors that modulate sexual conversion.

2016 ◽  
Vol 60 (11) ◽  
pp. 6859-6866 ◽  
Author(s):  
Zi Wei Chang ◽  
Benoit Malleret ◽  
Bruce Russell ◽  
Laurent Rénia ◽  
Carla Claser

ABSTRACTEx vivoassay systems provide a powerful approach to studying human malaria parasite biology and to testing antimalarials. For rodent malaria parasites, short-termin vitroculture andex vivoantimalarial susceptibility assays are relatively cumbersome, relying onin vivopassage for synchronization, since ring-stage parasites are an essential starting material. Here, we describe a new approach based on the enrichment of ring-stagePlasmodium berghei,P. yoelii, andP. vinckei vinckeiusing a single-step Percoll gradient. Importantly, we demonstrate that the enriched ring-stage parasites develop synchronously regardless of the parasite strain or species used. Using a flow cytometry assay with Hoechst and ethidium or MitoTracker dye, we show that parasite development is easily and rapidly monitored. Finally, we demonstrate that this approach can be used to screen antimalarial drugs.


Author(s):  
Barbara Nunn

The effect of aspirin on human platelet function is usually assessed using platelet-rich plasma (PRP). Some preliminary results in vitro suggested that the effect of aspirin appears to be greater in PRP than whole blood. To explore this possibility further, a comparison of the effect of aspirin in humans ex vivo has been made taking measurements simultaneously in whole blood and PRP at 2 platelet concentrations. Blood samples (36ml) were drawn from 7 male volunteers after a light breakfast. Each took 300mg soluble aspirin and blood samples were drawn again 2 hours later. Blood was mixed with 0.1 volumes 129nM trisodium citrate. Some (30ml) was then centrifuged to prepare PRP and platelet -poor plasma (PPP) by standard techniques. Platelet concentration of some PRP was adjusted with PPP to equal that of the corresponding blood sample; the rest was adjusted to 350,000 per μl. Aggregation in response to collagen (Horm, Munich) was measured photometrically at 37°. Aggregation in 0.5ml aliquots of whole blood was measured after 4 min stirring with 154mM NaCl (control) or collagen at 37° as the fall in single platelet count determined using an Ultraflo- 100 whole blood platelet counter (Clay Adams). The concentrations of collagen producing a 50% maximal response (EC50) in PRP and blood were determined. Dose-ratios for each volunteer were calculated by dividing the EC50 obtained after aspirin by the corresponding value obtained before aspirin.The effect of aspirin was significantly (p<0.001) less in blood than PRP. Whether or not the results in whole blood more closely reflect the effect of aspirin in vivo remains to be determined.


2019 ◽  
Author(s):  
Ryan C. Henrici ◽  
Rachel L. Edwards ◽  
Martin Zoltner ◽  
Donelly A. van Schalkwyk ◽  
Melissa N. Hart ◽  
...  

SummaryThe efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin. In the Mekong region this is associated with mutations in the kelch propeller-encoding domain of pfkelch13, but variants of other parasite proteins are also thought to modulate the response to drug. Evidence from human and rodent studies suggests that the μ-subunit of the AP-2 adaptin trafficking complex is one such protein of interest. We generated transgenic Plasmodium falciparum parasites encoding the I592T variant of pfap2μ, orthologous to the I568T mutation associated with in vivo artemisinin resistance in P. chabaudi. When exposed to a four-hour pulse of dihydroartemisin in the ring-stage survival assay, two P. falciparum clones expressing AP-2μ I592T displayed significant and reproducible survival of 8.0% and 10.3%, respectively, compared to <2% for the 3D7 parental line (P = 0.0011 for each clone). In immunoprecipitation and localisation studies of HA-tagged AP-2μ, we identified interacting partners including AP-2α, AP-1/2β, AP-2σ and a kelch-domain protein encoded on chromosome 10 of P. falciparum, K10. Conditional knockout indicates that the AP-2 trafficking complex in P. falciparum is essential for the fidelity of merozoite biogenesis and membrane organisation in the mature schizont. We also show that while other heterotetrameric AP-complexes and secretory factors interact with clathrin, AP-2 complex subunits do not. Thus, the AP-2 complex may be diverted from a clathrin-dependent endocytic role seen in most eukaryotes into a Plasmodium-specific function. These findings represent striking divergences from eukaryotic dogma and support a role for intracellular traffic in determining artemisinin sensitivity in vitro, confirming the existence of multiple functional routes to reduced ring-stage artemisinin susceptibility. Therefore, the utility of pfkelch13 variants as resistance markers is unlikely to be universal, and phenotypic surveillance of parasite susceptibility in vivo may be needed to identify threats to our current combination therapies.


2014 ◽  
Vol 58 (6) ◽  
pp. 3157-3161 ◽  
Author(s):  
Kesinee Chotivanich ◽  
Rupam Tripura ◽  
Debashish Das ◽  
Poravuth Yi ◽  
Nicholas P. J. Day ◽  
...  

ABSTRACTConventional 48-hin vitrosusceptibility tests have low sensitivity in identifying artemisinin-resistantPlasmodium falciparum, defined phenotypically by lowin vivoparasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistantP. falciparumis prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P= 0.001). TMI IC50s correlated significantly with thein vivoresponses to artesunate (parasite clearance time [r= 0.44,P= 0.001] and parasite clearance half-life [r= 0.46,P= 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility.


2020 ◽  
Author(s):  
Nelson V. Simwela ◽  
Barbara H. Stokes ◽  
Dana Aghabi ◽  
Matt Bogyo ◽  
David A. Fidock ◽  
...  

ABSTRACTThe recent emergence of Plasmodium falciparum (PF) parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the PF K13 protein, which enhance survival of early ring stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous PF K13 mutations into the K13 gene of an artemisinin-sensitive, P. berghei (PB) rodent model of malaria. Introduction of the orthologous PF K13 F446I, M476I, Y493H and R539T mutations into PB K13 produced gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-hour in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant PB K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into PB while the equivalent of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these PB K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome ART resistance. Taken together, our work provides clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro, and most importantly under in vivo conditions.IMPORTANCERecent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon treatment with the drug. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, P. berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y, I543T) into the corresponding amino acid residues, while other introduced mutations (M476I, R539T equivalents) carried a pronounced fitness cost. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0240874
Author(s):  
Brian M. Gruessner ◽  
Pamela J. Weathers

Dried-leaf Artemisia annua L. (DLA) antimalarial therapy was shown effective in prior animal and human studies, but little is known about its mechanism of action. Here IC50s and ring-stage assays (RSAs) were used to compare extracts of A. annua (DLAe) to artemisinin (ART) and its derivatives in their ability to inhibit and kill Plasmodium falciparum strains 3D7, MRA1252, MRA1240, Cam3.11 and Cam3.11rev in vitro. Strains were sorbitol and Percoll synchronized to enrich for ring-stage parasites that were treated with hot water, methanol and dichloromethane extracts of DLA, artemisinin, CoArtem™, and dihydroartemisinin. Extracts of A. afra SEN were also tested. There was a correlation between ART concentration and inhibition of parasite growth. Although at 6 hr drug incubation, the RSAs for Cam3.11rev showed DLA and ART were less effective than high dose CoArtem™, 8 and 24 hr incubations yielded equivalent antiparasitic results. For Cam3.11, drug incubation time had no effect. DLAe was more effective on resistant MRA-1240 than on the sensitive MRA-1252 strain. Because results were not as robust as observed in animal and human studies, a host interaction was suspected, so sera collected from adult and pediatric Kenyan malaria patients was used in RSA inhibition experiments and compared to sera from adults naïve to the disease. The sera from both age groups of malaria patients inhibited parasite growth ≥ 70% after treatment with DLAe and compared to malaria naïve subjects suggesting some host interaction with DLA. The discrepancy between these data and in-vivo reports suggested that DLA’s effects require an interaction with the host to unlock their potential as an antimalarial therapy. Although we showed there are serum-based host effects that can kill up to 95% of parasites in vitro, it remains unclear how or if they play a role in vivo. These results further our understanding of how DLAe works against the malaria parasite in vitro.


2016 ◽  
Vol 84 (9) ◽  
pp. 2689-2696 ◽  
Author(s):  
Danielle I. Stanisic ◽  
John Gerrard ◽  
James Fink ◽  
Paul M. Griffin ◽  
Xue Q. Liu ◽  
...  

Plasmodium falciparumis the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-gradeP. falciparumparasites (NF54, 7G8, and 3D7B) andex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants forin vitrocharacterization. All parasites were infectivein vivo. However, infectivity of NF54 was dramatically reduced.In vitrocharacterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggestingP. falciparumerythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3679-3679
Author(s):  
Daniel Teschner ◽  
Katharina Plein ◽  
Christian Michel ◽  
Steve Pruefer ◽  
Matthias Bros ◽  
...  

Abstract Background and Aims: Immunosuppressive medication e.g. by calcineurin inhibitors substantially contributes to the risk for opportunistic fungal infections in patients after allogeneic transplantation (HSCT). It is well known that the nuclear factor of activated T cells (NFAT) is an important transcription factor downstream of calcineurin especially in T cells. Additionally, recent data in rodent models indicate that NFAT also seems to play a relevant role in innate antifungal immune responses by polymorphonuclear neutrophils (PMN), as well as in regulation of myelopoiesis and myeloid differentiation. Methods: Firstly, isolated PMN from healthy donors were analyzed in vitro in absence or presence of CsA regarding their effector functions and activation-induced release of inflammatory mediators. Consecutively, blood samples of CsA-treated patients after allogeneic HSCT (n=17) and healthy donors (n=8) were analyzed ex vivo at two different time points as described above. Secondly, we used a murine IPA model (C57BL/6) and treated mice with CsA (18 mg/kg/d) or vehicle and challenged them with Aspergillus fumigatus (A. f.) conidia intratracheally. PMN recruitment to the lungs and pulmonary fungal clearance were examined by analyzing bronchoalveolar lavages (BAL) and peripheral blood (PB) using flow cytometry and cytometric bead array and murine lungs by fungal culture assays and histopathologic examination. Furthermore, survival was studied with neutropenic animals serving as positive controls. Moreover, LysM-specific NFATc1 knockout (NFATc1LysM) mice were bred lacking NFATc1 expression solely in myelomonocytic cells. These animals were also infected with A. f. and analyzed as further mentioned. In addition, we investigated myelopoiesis and myeloid differentiation by quantifying bone marrow derived myeloid progenitor cells from CsA treated or NFATc1LysMmice using flow cytometry and simultaneously counting PMN in PB under steady state conditions. Results: CsA enhanced phagocytosis of PMN in vitro and ex vivo in patients' blood samples (54.2 % +/- 4.1 (patients) vs. 43.8 +/- 1.5, LPS, p=0.006). Moreover, PMNs migratory capabilities were reduced in vitro, whereas other effector functions or release of IL-8 were rather unaffected. PMNs of CsA-treated patients showed increased activation, degranulation and production of inflammatory mediators, but production of ROS was slightly decreased. In our in vivo model, IPA was lethal in neutropenic mice whereas solely CsA or vehicle treated mice survived the infection. CsA treatment resulted in enhanced PMN recruitment in BAL by trend, while pulmonary inflammation and PMN counts in PB remained stable. Indeed, fungal clearance was clearly constrained in CsA treated animals (2.1 x 105 CFU/lung +/- 0.5 (CsA) vs. 1.7 x 105 +/- 0.2, p<0.005). In our murine knockout model, NFATc1LysM mice infected with A. f. showed unimpaired survival without displaying detectable differences in PMN recruitment or fungal clearance. However, pulmonary inflammation and PMN counts in PB seemed to be more pronounced in knockout mice. Interestingly, BALs of CsA treated mice showed increased levels of IL-6 by trend (4634 pg/mL +/- 1073 (CsA) vs. 3108 +/- 729, p=0.48) but decreased levels of MCP-1 and TNF-α. In contrast, MCP-1, RANTES and TNF-α were enhanced by trend in BALs of NFATc1LysM mice, while IL-6 was reduced compared to wild type controls (3762 pg/mL +/- 729 vs. 4770 +/- 1613, p=0.81). PMN counts in PB were unaffected in NFATc1LysM mice but distribution of bone marrow derived murine myeloid progenitor cells was clearly impaired especially in megakaryocyte-erythroid progenitor cells (1.2 x 105 cells +/- 0.2 (NFATc1LysM) vs. 2.7 +/- 0.6, p=0.015), whereas solely CsA treatment had no influence. Conclusion: Results from our in vitro and ex vivo studies on patients' blood samples as well as from our murine in vivo IPA model indicate that NFAT regulates not only myelopoiesis, but also PMN functionalities in mice and humans. Nevertheless, these interactions are obviously multidimensional and potentially derive from involvement of different pathways. The underlying molecular mechanisms and clinical relevance of our findings in HSCT remain to be determined. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (9) ◽  
pp. 1845-1852 ◽  
Author(s):  
T Hasler ◽  
SM Handunnetti ◽  
JC Aguiar ◽  
MR van Schravendijk ◽  
BM Greenwood ◽  
...  

Abstract To understand the molecular mechanisms that lead to sequestration of red blood cells infected with mature stages of Plasmodium falciparum and to examine the relevance of earlier studies on adherence properties of laboratory-derived P falciparum parasites to the natural parasite population, we analyzed Gambian and Tanzanian isolates for in vitro cytoadherence and antibody-mediated microagglutination. Eighteen cryopreserved isolates of ring-stage parasites were cultured for 20 to 30 hours in vitro, in the patients original erythrocytes, to the trophozoite and schizont stage. All parasites were positive in the microagglutination assay with at least one of four African hyperimmune sera. In a rosetting assay, only 2 of the 18 isolates were strongly positive (35% and 41% of parasitized erythrocytes with more than two uninfected cells bound). Thirteen isolates showed either intermediate (5% to 18%) or low (less than 5%) rosetting while three isolates did not form rosettes. Infected cell-binding of the different isolates to immobilized CD36 or thrombospondin, or C32 melanoma cells correlated with the percentage of mature parasites in the blood samples (r = .932 for CD36, r = .946 for thrombospondin, and r = .881 for C32 melanoma cells). There was a high correlation between binding to CD36 and thrombospondin (r = .982). The extent of infected cell rosetting with uninfected cells in these blood samples was not correlated with these other receptor properties. We also observed coexpression of rosetting and cytoadherence receptors on the same parasitized erythrocytes.


2011 ◽  
Vol 56 (1) ◽  
pp. 428-431 ◽  
Author(s):  
Franka Teuscher ◽  
Nanhua Chen ◽  
Dennis E. Kyle ◽  
Michelle L. Gatton ◽  
Qin Cheng

ABSTRACTThe appearance ofPlasmodium falciparumparasites with decreasedin vivosensitivity but no measurablein vitroresistance to artemisinin has raised the urgent need to characterize the artemisinin resistance phenotype. Changes in the temporary growth arrest (dormancy) profile of parasites may be one aspect of this phenotype. In this study, we investigated the link between dormancy and resistance, using artelinic acid (AL)-resistant parasites. Our results demonstrate that the AL resistance phenotype has (i) decreased sensitivity of mature-stage parasites, (ii) decreased sensitivity of the ring stage to the induction of dormancy, and (iii) a faster recovery from dormancy.


Sign in / Sign up

Export Citation Format

Share Document