scholarly journals Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Taiki Katayama ◽  
Masaru K. Nobu ◽  
Hiroyuki Kusada ◽  
Xian-Ying Meng ◽  
Naoki Hosogi ◽  
...  

AbstractA key feature that differentiates prokaryotic cells from eukaryotes is the absence of an intracellular membrane surrounding the chromosomal DNA. Here, we isolate a member of the ubiquitous, yet-to-be-cultivated phylum ‘Candidatus Atribacteria’ (also known as OP9) that has an intracytoplasmic membrane apparently surrounding the nucleoid. The isolate, RT761, is a subsurface-derived anaerobic bacterium that appears to have three lipid membrane-like layers, as shown by cryo-electron tomography. Our observations are consistent with a classical gram-negative structure with an additional intracytoplasmic membrane. However, further studies are needed to provide conclusive evidence for this unique intracellular structure. The RT761 genome encodes proteins with features that might be related to the complex cellular structure, including: N-terminal extensions in proteins involved in important processes (such as cell-division protein FtsZ); one of the highest percentages of transmembrane proteins among gram-negative bacteria; and predicted Sec-secreted proteins with unique signal peptides. Physiologically, RT761 primarily produces hydrogen for electron disposal during sugar degradation, and co-cultivation with a hydrogen-scavenging methanogen improves growth. We propose RT761 as a new species, Atribacter laminatus gen. nov. sp. nov. and a new phylum, Atribacterota phy. nov.

2020 ◽  
Vol 295 (45) ◽  
pp. 15196-15197
Author(s):  
Solène Denolly ◽  
François-Loïc Cosset

The penetration of enveloped viruses into target cells requires the fusion of the lipid envelope of their virions with the host lipid membrane though a stepwise and highly sophisticated process. However, the intermediate steps in this process have seldom been visualized due to their rarity and rapidity. Here, using cryo-electron tomography, TIRF microscopy, and cell membrane–derived vesicles called blebs, Ward et al. visualize intermediates of the HIV-cell membrane fusion process and demonstrate how Serinc proteins prevent full fusion by interfering with this process.


2020 ◽  
Author(s):  
Yao Tian ◽  
Ruina Liang ◽  
Amit Kumar ◽  
Piotr Szwedziak ◽  
John H. Viles

ABSTRACTAmyloid-β (Aβ) monomers assemble into mature fibrils via a range of metastable oligomeric and protofibrillar intermediates. These Aβ assemblies have been shown to bind to lipid bilayers. This can disrupt membrane integrity and cause a loss of cellular homeostasis, that triggers a cascade of events leading to Alzheimer’s disease. However, molecular mechanisms of Aβ cytotoxicity and how the different assembly forms interact with the membrane remain enigmatic. Here we use cryo-electron tomography (cryoET) to obtain three-dimensional nano-scale images of various Aβ assembly types and their interaction with liposomes. Aβ oligomers bind extensively to the lipid vesicles, inserting and carpeting the upper-leaflet of the bilayer. Furthermore, curvilinear protofibrils also insert into the bilayer, orthogonally to the membrane surface. Aβ oligomers concentrate at the interface of vesicles and form a network of Aβ-linked liposomes. While crucially, monomeric and fibrillar Aβ have relatively little impact on the membrane. Changes to lipid membrane composition highlights a significant role for GM1-ganglioside in promoting Aβ-membrane interactions. The different effects of Aβ assembly forms observed align with the highlighted cytotoxicity reported for Aβ oligomers. The wide-scale incorporation of Aβ oligomers and curvilinear protofibrils into the lipid bilayer suggests a mechanism by which membrane integrity is lost.


Author(s):  
C. L. Scott ◽  
W. R. Finnerty

Acinetobacter sp. HO-1-N, a gram-negative hydrocarbon oxidizing bacterium previously designated Micrococcus cerificans, has been shown to sequester the hydrocarbon into intracytoplasmic pools as a result of growth on this substrate. In hydrocarbon grown cells, an intracytoplasmic membrane system was also observed along with a doubling of cellular phospholipids (Z). However, using conventional dehydration and embedding procedures in preparing thin sectioned material, the hydrocarbon is extracted from the cells. This may lead to structural distortion, consequently, the freeze-etch technique was applied to preserve the integrity of the cell.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


Sign in / Sign up

Export Citation Format

Share Document