scholarly journals Mixing indistinguishable systems leads to a quantum Gibbs paradox

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin Yadin ◽  
Benjamin Morris ◽  
Gerardo Adesso

AbstractThe classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether an observer assigns an entropy increase to the process depends on their ability to distinguish the gases. A resolution is that an “ignorant” observer, who cannot distinguish the gases, has no way of extracting work by mixing them. Moving the thought experiment into the quantum realm, we reveal new and surprising behaviour: the ignorant observer can extract work from mixing different gases, even if the gases cannot be directly distinguished. Moreover, in the macroscopic limit, the quantum case diverges from the classical ideal gas: as much work can be extracted as if the gases were fully distinguishable. We show that the ignorant observer assigns more microstates to the system than found by naive counting in semiclassical statistical mechanics. This demonstrates the importance of accounting for the level of knowledge of an observer, and its implications for genuinely quantum modifications to thermodynamics.

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 599
Author(s):  
Fabien Paillusson

Most undergraduate students who have followed a thermodynamics course would have been asked to evaluate the volume occupied by one mole of air under standard conditions of pressure and temperature. However, what is this task exactly referring to? If air is to be regarded as a mixture, under what circumstances can this mixture be considered as comprising only one component called “air” in classical statistical mechanics? Furthermore, following the paradigmatic Gibbs’ mixing thought experiment, if one mixes air from a container with air from another container, all other things being equal, should there be a change in entropy? The present paper addresses these questions by developing a prior-based statistical mechanics framework to characterise binary mixtures’ composition realisations and their effect on thermodynamic free energies and entropies. It is found that (a) there exist circumstances for which an ideal binary mixture is thermodynamically equivalent to a single component ideal gas and (b) even when mixing two substances identical in their underlying composition, entropy increase does occur for finite size systems. The nature of the contributions to this increase is then discussed.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 552 ◽  
Author(s):  
Simon Saunders

The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.


1980 ◽  
Vol 22 (2) ◽  
pp. 477-496 ◽  
Author(s):  
J. F. Currie ◽  
J. A. Krumhansl ◽  
A. R. Bishop ◽  
S. E. Trullinger

Author(s):  
Stephen J. Blundell ◽  
Katherine M. Blundell

2016 ◽  
Vol 30 (09) ◽  
pp. 1630008
Author(s):  
Xi-Wen Guan ◽  
Yang-Yang Chen

Yang and Yang in 1969 [J. Math. Phys. 10, 1115 (1969)] for the first time proposed a rigorous approach to the thermodynamics of the one-dimensional system of bosons with a delta-function interaction. This paper was a breakthrough in exact statistical mechanics, after Yang [Phys. Rev. Lett. 19, 1312 (1967)] published his seminal work on the discovery of the Yang–Baxter equation in 1967. Yang and Yang’s brilliant method yields significant applications in a wide range of fields of physics. In this paper, we briefly introduce the method of the Yang–Yang equilibrium statistical mechanics and demonstrate a fundamental application of the Yang–Yang method for the study of thermodynamics of the Lieb–Liniger model with strong and weak interactions in a whole temperature regime. We also consider the equivalence between the Yang–Yang’s thermodynamic Bethe ansatz equation and the thermodynamics of the ideal gas with the Haldane’s generalized exclusion statistics.


2000 ◽  
Vol 14 (04) ◽  
pp. 405-409 ◽  
Author(s):  
LUCA SALASNICH

We discuss the Bose–Einstein condensation (BEC) for an ideal gas of bosons in the framework of Tsallis's nonextensive statistical mechanics. We study the corrections to the st and ard BEC formulas due to a weak nonextensivity of the system. In particular, we consider three cases in the D-dimensional space: the homogeneous gas, the gas in a harmonic trap and the relativistic homogenous gas. The results show that small deviations from the extensive Bose statistics produce remarkably large changes in the BEC transition temperature.


2013 ◽  
Vol 867 (3) ◽  
pp. 950-976 ◽  
Author(s):  
Francesco Mancarella ◽  
Andrea Trombettoni ◽  
Giuseppe Mussardo

Sign in / Sign up

Export Citation Format

Share Document