scholarly journals Author Correction: Self-assembly and regulation of protein cages from pre-organised coiled-coil modules

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabio Lapenta ◽  
Jana Aupič ◽  
Marco Vezzoli ◽  
Žiga Strmšek ◽  
Stefano Da Vela ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21969-9

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabio Lapenta ◽  
Jana Aupič ◽  
Marco Vezzoli ◽  
Žiga Strmšek ◽  
Stefano Da Vela ◽  
...  

AbstractCoiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities. Here, we show the design of a de novo triangular bipyramid fold comprising 18 CC-forming segments and define the strategy for the two-chain self-assembly of the bipyramidal cage from asymmetric and pseudo-symmetric pre-organised structural modules. In addition, by introducing a protease cleavage site and masking the interfacial CC-forming segments in the two-chain bipyramidal cage, we devise a proteolysis-mediated conformational switch. This strategy could be extended to other modular protein folds, facilitating the construction of dynamic multi-chain CC-based complexes.


2021 ◽  
Vol 118 (17) ◽  
pp. e2021899118
Author(s):  
Andreja Majerle ◽  
San Hadži ◽  
Jana Aupič ◽  
Tadej Satler ◽  
Fabio Lapenta ◽  
...  

Coiled-coil (CC) dimers are widely used in protein design because of their modularity and well-understood sequence–structure relationship. In CC protein origami design, a polypeptide chain is assembled from a defined sequence of CC building segments that determine the self-assembly of protein cages into polyhedral shapes, such as the tetrahedron, triangular prism, or four-sided pyramid. However, a targeted functionalization of the CC modules could significantly expand the versatility of protein origami scaffolds. Here, we describe a panel of single-chain camelid antibodies (nanobodies) directed against different CC modules of a de novo designed protein origami tetrahedron. We show that these nanobodies are able to recognize the same CC modules in different polyhedral contexts, such as isolated CC dimers, tetrahedra, triangular prisms, or trigonal bipyramids, thereby extending the ability to functionalize polyhedra with nanobodies in a desired stoichiometry. Crystal structures of five nanobody-CC complexes in combination with small-angle X-ray scattering show binding interactions between nanobodies and CC dimers forming the edges of a tetrahedron with the nanobody entering the tetrahedral cavity. Furthermore, we identified a pair of allosteric nanobodies in which the binding to the distant epitopes on the antiparallel homodimeric APH CC is coupled via a strong positive cooperativity. A toolbox of well-characterized nanobodies specific for CC modules provides a unique tool to target defined sites in the designed protein structures, thus opening numerous opportunities for the functionalization of CC protein origami polyhedra or CC-based bionanomaterials.


2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Meleties ◽  
Priya Katyal ◽  
Bonnie Lin ◽  
Dustin Britton ◽  
Jin Kim Montclare

Owing to their tunable properties, hydrogels comprised of stimuli sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We...


Author(s):  
Amberly Xie ◽  
Irina Tsvetkova ◽  
Yang Liu ◽  
Xingchen Ye ◽  
Priyadarshine Hewavitharanage ◽  
...  

Soft Matter ◽  
2019 ◽  
Vol 15 (36) ◽  
pp. 7122-7126
Author(s):  
Allison Siehr ◽  
Bin Xu ◽  
Ronald A. Siegel ◽  
Wei Shen

Orientational discrimination of biomolecular recognition is exploited to control nanoparticle self assembly and colloidal stability.


2013 ◽  
Vol 19 (S2) ◽  
pp. 342-343
Author(s):  
C. Xu ◽  
E.R. Wright ◽  
A. Mehta ◽  
L.C. Ser-pell ◽  
X. Zuo ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher Aronsson ◽  
Staffan Dånmark ◽  
Feng Zhou ◽  
Per Öberg ◽  
Karin Enander ◽  
...  
Keyword(s):  

2015 ◽  
Vol 17 (46) ◽  
pp. 31055-31060 ◽  
Author(s):  
Emiliana De Santis ◽  
Valeria Castelletto ◽  
Maxim G. Ryadnov

A de novo self-assembly topology for engineering protein nanostructures under morphological control is reported.


Sign in / Sign up

Export Citation Format

Share Document